May 11, 2006
We examine the effects of anomalous U(1)_A gauge symmetry on soft supersymmetry breaking terms while incorporating the stabilization of the modulus-axion multiplet responsible for the Green-Schwarz (GS) anomaly cancellation mechanism. In case of the KKLT stabilization of the GS modulus, soft terms are determined by the GS modulus mediation, the anomaly mediation and the U(1)_A mediation which are generically comparable to each other, thereby yielding the mirage mediation pattern of superparticle masses at low energy scale. Independently of the mechanism of moduli stabilization and supersymmetry breaking, the U(1)_A D-term potential can not be an uplifting potential for de Sitter vacuum when the gravitino mass is smaller than the Planck scale by many orders of magnitude. We also discuss some features of the supersymmetry breaking by red-shifted anti-brane which is a key element of the KKLT moduli stabilization.
Similar papers 1
April 17, 2011
Models with anomalous U(1) gauge symmetry contain various superfields which can have nonzero supersymmetry breaking auxiliary components providing the origin of soft terms in the visible sector, e.g. the U(1) vector superfield, the modulus or dilaton superfield implementing the Green-Schwarz anomaly cancellation mechanism, U(1)-charged but standard model singlet matter superfield required to cancel the Fayet-Iliopoulos term, and finally the supergravity multiplet. We examine ...
March 28, 2005
We examine the structure of soft supersymmetry breaking terms in KKLT models of flux compactification with low energy supersymmetry. Moduli are stabilized by fluxes and nonperturbative dynamics while a de Sitter vacuum is obtained by adding supersymmetry breaking anti-branes. We discuss the characteristic pattern of mass scales in such a set-up as well as some features of 4D N=1 supergravity breakdown by anti-branes. Anomaly mediation is found to always give an important cont...
June 13, 2008
We present a model of supersymmetry breaking in which the contributions from gravity/modulus, anomaly, and gauge mediation are all comparable. We term this scenario "deflected mirage mediation," which is a generalization of the KKLT-motivated mirage mediation scenario to include gauge mediated contributions. These contributions deflect the gaugino mass unification scale and alter the pattern of soft parameters at low energies. In some cases, this results in a gluino LSP and l...
November 14, 2005
In string compactification preserving N=1 SUSY, moduli fields are plausible candidates for the messenger of SUSY breaking at low energy scales. In a scenario that moduli-mediated SUSY breaking is significant, the pattern of soft SUSY breaking terms depends crucially on how the light moduli with mass m \lesssim O(8\pi^2 m_{3/2}) are stabilized. We discuss the correspondence between the pattern of soft terms and the stabilization mechanism of light moduli within the framework o...
August 29, 2011
We study the general effects of anomalous U(1)_A gauge symmetry on soft supersymmetry (SUSY) breaking terms in large volume scenario, where the MSSM sector is localized on a small cycle whose volume is stabilized by the D-term potential of the U(1)_A. Since it obtains SUSY breaking mass regardless of the detailed form of K\"ahler potential, the U(1)_A vector superfield acts as a messenger mediating the SUSY breaking in the moduli sector to the MSSM sector. Then, through the l...
June 12, 2006
In D-brane models, different part of the 4-dimensional gauge group might originate from D-branes wrapping different cycles in the internal space, and then the standard model gauge couplings at the compactification scale are determined by different cycle-volume moduli. We point out that those cycle-volume moduli can naturally have universal vacuum expectation values up to small deviations suppressed by 1/8\pi^2 if they are stabilized by KKLT-type non-perturbative superpotentia...
July 1, 2008
We study how two moduli can be stabilized in a Minkowski/de Sitter vacuum for a wide class of string-inspired Supergravity models with an effective Fayet-like Supersymmetry breaking. It is shown under which conditions this mechanism can be made natural and how it can give rise to an interesting spectrum of soft masses, with a relatively small mass difference between scalar and gaugino masses. In absence of a constant superpotential term, the above mechanism becomes completely...
July 12, 2006
We study the effect of anomalous U(1) gauge groups in string theory compactification with fluxes. We find that, in a gauge invariant formulation, consistent AdS vacua appear breaking spontaneously supergravity. Non vanishing D-terms from the anomalous symmetry act as an uplifting potential and could allow for de Sitter vacua. However, we show that in this case the gravitino is generically (but not always) much heavier than the electroweak scale. We show that alternative uplif...
September 19, 2008
We discuss the pattern of low energy sparticle spectra which appears in some class of moduli stabilization scenario. In case that light moduli are stabilized by non-perturbative effects encoded in the superpotential and a phenomenologically viable de Sitter vacuum is obtained by a sequestered supersymmetry breaking sector, the anomaly-mediated soft terms become comparable to the moduli-mediated ones, leading to a quite distinctive pattern of low energy spacticle masses dubbed...
April 6, 2005
In some string compactifications, for instance the recently proposed KKLT set-up, light moduli are stabilized by nonperturbative effects at supersymmetric AdS vacuum which is lifted to a dS vacuum by supersymmetry breaking uplifting potential. In such models, soft supersymmetry breaking terms are determined by a specific mixed modulus-anomaly mediation in which the two mediations typically give comparable contributions to soft parameters. Similar pattern of soft terms can ari...