May 16, 2006
Similar papers 2
September 16, 2008
In this paper we consider a moving quark in the thermal plasma at the N=2 Supergravity theory. By using the AdS/CFT correspondence we obtain energy loss of the quark. Then we consider the higher derivative corrections in charged AdS-black hole and calculate the drag force of the moving quark in the thermal plasma. Also we find a limit which N=2 Supergravity solutions are correspondening to the N=4 Super Yang-Mills solutions for the heavy quark.
February 1, 2011
Using the AdS/CFT correspondence in the supergravity approximation, we compute the energy density radiated by a heavy quark undergoing some arbitrary motion in the vacuum of the strongly coupled N=4 supersymmetric Yang-Mills theory. We find that this energy is fully generated via backreaction from the near-boundary endpoint of the dual string attached to the heavy quark. Because of that, the energy distribution shows the same space-time localization as the classical radiation...
July 13, 2006
We make use of the AdS/CFT correspondence to determine the energy of an external quark-antiquark pair that moves through strongly-coupled thermal N=4 super-Yang-Mills plasma, both in the rest frame of the plasma and in the rest frame of the pair. It is found that the pair feels no drag force, has an energy that reproduces the expected 1/L (or gamma/L) behavior at small quark-antiquark separations, and becomes unbound beyond a certain screening length whose velocity-dependence...
December 2, 2007
The stress-energy tensor of a quark moving through a strongly coupled N=4 supersymmetric Yang-Mills plasma is evaluated using gauge/string duality. The accuracy with which the resulting wake, in position space, is reproduced by hydrodynamics is examined. Remarkable agreement is found between hydrodynamics and the complete result down to distances less than 2/T away from the quark. In performing the gravitational analysis, we use a relatively simple formulation of the bulk to ...
December 13, 2006
Expectation values of Wilson loops define the nonperturbative properties of the hot medium produced in heavy ion collisions that arise in the analysis of both radiative parton energy loss and quarkonium suppression. We use the AdS/CFT correspondence to calculate the expectation values of such Wilson loops in the strongly coupled plasma of N=4 super Yang-Mills (SYM) theory, allowing for the possibility that the plasma may be moving with some collective flow velocity as is the ...
November 15, 2006
We consider different types of external color sources that move through a strongly-coupled thermal N=4 super-Yang-Mills plasma, and calculate, via the AdS/CFT correspondence, the dissipative force (or equivalently, the rate of energy loss) they experience. A bound state of k quarks in the totally antisymmetric representation is found to feel a force with a nontrivial k-dependence. Our result for k=1 (or k=N-1) agrees at large N with the one obtained recently by Herzog et al. ...
May 31, 2006
Using AdS/CFT, we compute the Fourier space profile of <tr F^2> generated by a heavy quark moving through a thermal plasma of strongly coupled N=4 super-Yang-Mills theory. We find evidence of a wake whose description includes gauge fields with large momenta. We comment on the possible relevance of our results to relativistic heavy ion collisions.
March 2, 2009
We give a brief overview of the results obtained in arXiv:0803.3070, concerning the rate of energy loss of an accelerating quark in strongly-coupled N=4 super-Yang-Mills, both at zero and finite temperature. For phenomenological purposes, our main result is that, when a quark is created within the plasma together with its corresponding antiquark, the quark starts feeling the plasma only after the q-\bar{q} separation becomes larger than the (v-dependent) screening length, and...
November 3, 2011
We give a brief overview of recent results obtained through the gauge/gravity correspondence, concerning the propagation of a heavy quark in strongly-coupled conformal field theories (such as N=4 super-Yang-Mills), both at zero and finite temperature. In the vacuum, we discuss energy loss, radiation damping, signal propagation and radiation-induced fluctuations. In the presence of a thermal plasma, our emphasis is on early-time energy loss, screening and quark-antiquark evolu...
April 7, 2011
Applying the AdS/CFT correspondence, the expansion of the heavy-quark potential of the ${\cal N}$ supersymmetric Yang-Mills theory at large $N_c$ is carried out to the sub-leading term in the large 't Hooft coupling at nonzero temperatures. The strong coupling corresponds to the semi-classical expansion of the string-sigma model, the gravity dual of the Wilson loop operator, with the sub-leading term expressed in terms of functional determinants of fluctuations. The contribut...