July 23, 2006
Similar papers 5
July 29, 2004
Recently, the notion that the number of vacua is enormous has received increased attentions, which may be regarded as a possible anthropical explanation to incredible small cosmological constant. Further, a dynamical mechanisms to implement this possibility is required. We show in an operable model of cyclic universe that the universe can experience many cycles with different vacua, which is a generic behavior independent of the details of the model. This might provide a dist...
September 9, 2013
We examine the processes of quantum squeezing and decoherence of density perturbations produced during a slowly contracting ekpyrotic phase in which entropic perturbations are converted to curvature perturbations before the bounce to an expanding phase. During the generation phase, the entropic fluctuations evolve into a highly squeezed quantum state, analogous to the evolution of inflationary perturbations. Subsequently, during the conversion phase, quantum coherence is lost...
December 30, 2015
The results from Planck2015, when combined with earlier observations from WMAP, ACT, SPT and other experiments, were the first observations to disfavor the "classic" inflationary paradigm. To satisfy the observational constraints, inflationary theorists have been forced to consider plateau-like inflaton potentials that introduce more parameters and more fine-tuning, problematic initial conditions, multiverse-unpredictability issues, and a new 'unlikeliness problem.' Some prop...
July 27, 1998
We examine how the consequences which follow from a recent model, both in cosmology and at the elementary particle level have since been observationally and experimentally confirmed. Some of the considerations of the model are also justified from alternative viewpoints. It is also shown how the standard Big Bang and quark models can be recovered from the above theory.
December 14, 2011
Eternal inflation is a seemingly generic consequence of theories that give rise to accelerated expansion of the universe and possess multiple vacuum states. Making predictions in an eternally inflating universe is notoriously difficult because one must compare infinite quantities, and a wide variety of regulating procedures yield radically different results. This is the measure problem of eternal inflation. In this paper, we analyze models of eternal inflation which allow for...
October 19, 1995
The aim of this paper is to show, that the 'oscillating universe' is a viable alternative to inflation. We remind that this model provides a natural solution to the flatness or entropy and to the horizon problem of standard cosmology. We study the evolution of density perturbations and determine the power spectrum in a closed universe. The results lead to constraints of how a previous cycle might have looked like. We argue that most of the radiation entropy of the present uni...
April 8, 2008
It has been pointed out by several groups that ekpyrotic and cyclic models generate significant non-gaussianity. In this paper, we present a physically intuitive, semi-analytic estimate of the bispectrum. We show that, in all such models, there is an intrinsic contribution to the non-gaussianity parameter f_{NL} that is determined by the geometric mean of the equation of state w_{ek} during the ekpyrotic phase and w_{c} during the phase that curvature perturbations are genera...
December 27, 2013
This article discusses density perturbations in inflationary models, offering a pedagogical description of how these perturbations are generated by quantum fluctuations in the early universe. A key feature of inflation is that that rapid expansion can stretch microscopic fluctuations to cosmological proportions. I discuss also another important conseqence of quantum fluctuations: the fact that almost all inflationary models become eternal, so that once inflation starts, it ne...
June 17, 2002
The ekpyrotic and cyclic universe scenarios have revived the idea that the density perturbations apparent in today's universe could have been generated in a `pre-singularity' epoch before the big bang. These scenarios provide explicit mechanisms whereby a scale invariant spectrum of adiabatic perturbations may be generated without the need for cosmic inflation, albeit in a phase preceding the hot big bang singularity. A key question they face is whether there exists a unique ...
March 16, 2010
In this paper we consider a unique model of inflation where the universe undergoes rapid asymmetric oscillations, each cycle lasting millions of Planck time. Over many-many cycles the space-time expands to mimic the standard inflationary scenario. Moreover, these rapid oscillations leave a distinctive periodic signature in ln(k) in the primordial power spectrum, where k denotes the comoving scale. The best fit parameters of the cyclic-inflation model provides a very good fit ...