August 25, 2006
Similar papers 4
June 7, 2024
The reason for the present accelerated expansion of the Universe stands as one of the most profound questions in the realm of science, with deep connections to both cosmology and fundamental physics. From a cosmological point of view, physical models aimed at elucidating the observed expansion can be categorized into two major classes: dark energy and modified gravity. We review various major approaches that employ a single scalar field to account for the accelerating phase o...
April 5, 2007
We investigate the effect of the bulk content in the general Gauss-Bonnet braneworld on the evolution of the universe. We find that the Gauss-Bonnet term and the combination of the dark radiation and the matter content of the bulk play a crucial role in the universe evolution. We show that our model can describe the super-acceleration of our universe with the equation of state of the effective dark energy in agreement with observations.
January 29, 2006
We review various modified gravities considered as gravitational alternative for dark energy. Specifically, we consider the versions of $f(R)$, $f(G)$ or $f(R,G)$ gravity, model with non-linear gravitational coupling or string-inspired model with Gauss-Bonnet-dilaton coupling in the late universe where they lead to cosmic speed-up. It is shown that some of such theories may pass the Solar System tests. On the same time, it is demonstrated that they have quite rich cosmologica...
October 21, 2005
The solution of dark energy problem in the models without scalars is presented. It is shown that late-time accelerating cosmology may be generated by the ideal fluid with some implicit equation of state. The universe evolution within modified Gauss-Bonnet gravity is considered. It is demonstrated that such gravitational approach may predict the (quintessential, cosmological constant or transient phantom) acceleration of the late-time universe with natural transiton from decel...
November 14, 2014
We explore cosmology with a bounce in Gauss-Bonnet gravity where the Gauss-Bonnet invariant couples to a dynamical scalar field. In particular, the potential and and Gauss-Bonnet coupling function of the scalar field are reconstructed so that the cosmological bounce can be realized in the case that the scale factor has hyperbolic and exponential forms. Furthermore, we examine the relation between the bounce in the string (Jordan) and Einstein frames by using the conformal tra...
January 20, 2024
In this work we study the GW170817-compatible Einstein-Gauss-Bonnet theories during the reheating and the end of inflationary era. Given the scalar field potential $V(\phi)$ which can have some intrinsic importance for the theory, determining the scalar coupling function $\xi(\phi)$ can be cumbersome due to lack of analyticity. The GW170817 observation constrains the scalar coupling function and the scalar field potential to have some interdependence, thus during the slow-rol...
March 8, 2006
In this paper we review in detail a number of approaches that have been adopted to try and explain the remarkable observation of our accelerating Universe. In particular we discuss the arguments for and recent progress made towards understanding the nature of dark energy. We review the observational evidence for the current accelerated expansion of the universe and present a number of dark energy models in addition to the conventional cosmological constant, paying particular ...
February 18, 2023
We perform a detailed study of the phase-space of the field equations of an Einstein-Gauss-Bonnet scalar field cosmology for a spatially flat Friedmann--Lema\^{\i}tre--Robertson--Walker spacetime. For the scalar field potential, we consider the exponential function. In contrast, for the coupling function of the scalar field with the Gauss-Bonnet term, we assume two cases, the exponential function and the power-law function. We write the field equations in dimensionless variab...
June 16, 2005
Models with a scalar field coupled to the Gauss-Bonnet Lagrangian appear naturally from Kaluza-Klein compactifications of pure higher-dimensional gravity. We study linear, cosmological perturbations in the limits of weak coupling and slow-roll, and derive simple expressions for the main observable sub-horizon quantities: the anisotropic stress factor, the time-dependent gravitational constant, and the matter perturbation growth factor. Using present observational data, and as...
February 10, 2006
In this paper, we fully investigate the cosmological effects of the moduli dependent one-loop corrections to the gravitational couplings of the string effective action to explain the cosmic acceleration problem in early (and/or late) universe. These corrections comprise a Gauss-Bonnet (GB) invariant multiplied by universal non-trivial functions of the common modulus $\sigma$ and the dilaton $\phi$. The model exhibits several features of cosmological interest, including the tr...