September 8, 2006
We describe progress towards constructing a quantum theory of de Sitter space in four dimensions. In particular we indicate how both particle states and Schwarzschild de Sitter black holes can arise as excitations in a theory of a finite number of fermionic oscillators. The results about particle states depend on a conjecture about algebras of Grassmann variables, which we state, but do not prove.
Similar papers 1
June 13, 2001
We discuss some general properties of quantum gravity in De Sitter space. It has been argued that the Hilbert space is of finite dimension. This suggests a macroscopic argument that General Relativity cannot be quantized -- unless it is embedded in a more precise theory that determines the value of the cosmological constant. We give a definition of the quantum Hilbert space using the asymptotic behavior in the past and future, without requiring detailed microscopic knowledge....
October 3, 2011
de Sitter symmetry on quantum level implies that operators describing a given system satisfy commutation relations of the de Sitter algebra. This approach gives a new perspective on fundamental notions of quantum theory. We discuss applications of the approach to the cosmological constant problem, gravity, and particle theory.
October 27, 2006
We present a survey of rigourous quantization results obtained in recent works on quantum free fields in de Sitter space. For the "massive'' cases which are associated to principal series representations of the de Sitter group SO\_0(1,4), the construction is based on analyticity requirements on the Wightman two-point function. For the "massless'' cases (e.g. minimally coupled or conformal), associated to the discrete series, the quantization schemes are of the Gupta-Bleuler-K...
December 2, 2013
In this paper we will analyse quantum field theory on de Sitter spacetime. We will analyse a general scalar and vector field theory on de Sitter spacetime. This is done by first calculating these propagators on four-Sphere and then analytically continuing it to de Sitter spacetime.
May 2, 2003
This is a summary of two lectures I gave at the Davis Conference on Cosmic Inflation. I explain why the quantum theory of de Sitter (dS) space should have a finite number of states and explore gross aspects of the hypothetical quantum theory, which can be gleaned from semiclassical considerations. The constraints of a self-consistent measurement theory in such a finite system imply that certain mathematical features of the theory are unmeasurable, and that the theory is conse...
November 13, 2007
Three years ago, we introduced a new way to quantize the static Schwarzschild black hole(SSBH), there the SSBH was first treated as a single periodic Euclidean system and then the Bohr-Sommerfeld quantum condition of action was used to obtain a quantum theory of Schwarzschild black hole.[1] Now in this short report, we try to extend the above method to quantize the static de Sitter(SDS) space-time and establish a quantum theory of both SDS space and dark energy.
December 17, 2023
The purpose of this brief article is to clarify certain distortions of the history of ideas about the quantum theory of de Sitter space that have appeared in recent literature.
June 8, 2023
We sketch the construction of a quantum model of 3 dimensional de Sitter space, based on the Covariant Entropy Principle and the observation that semi-classical physics suggests the possibility of a consistent theory of a finite number of unstable massive particles with purely gravitational interactions. Our model is holographic, finite, unitary, causal, plausibly exhibits fast scrambling, and qualitatively reproduces features of semi-classical de Sitter physics. In an append...
May 17, 2002
This is my contribution to the Festschrift honoring Stephen Hawking on his 60th birthday. Twenty-five years ago, Gibbons and Hawking laid out the semi-classical properties of de Sitter space. After a summary of their main results, I discuss some further quantum aspects that have since been understood. The largest de Sitter black hole displays an intriguing pattern of instabilities, which can render the boundary structure arbitrarily complicated. I review entropy bounds specif...
July 29, 2004
In these lectures we give a review of recent attempts to understand quantum gravity on de Sitter spaces. In particular, we discuss the holographic correspondence between de Sitter gravity and conformal field theories proposed by Hull and by Strominger, and how this may be reconciled with the finite-dimensional Hilbert space proposal by Banks and Fischler. Furthermore we review the no-go theorems that forbid an embedding of de Sitter spaces in string theory, and discuss how th...