June 5, 2019
This contribution to the CPT'19 meeting provides a brief overview of recent theoretical studies of nonminimal Lorentz violation in linearized gravity. Signatures in gravitational waves from coalescing compact binaries are discussed.
April 15, 2004
If quantum gravity violates Lorentz symmetry, the prospects for observational guidance in understanding quantum gravity improve considerably. This article briefly reviews previous work on Lorentz violation (LV) and discusses aspects of the effective field theory framework for parametrizing LV effects. Current observational constraints on LV are then summarized, focusing on effects in QED at order E/M_Planck.
October 29, 2005
In general relativity, gravitational waves propagate at the speed of light, and so gravitons are massless. The masslessness can be traced to symmetry under diffeomorphisms. However, another elegant possibility exists: masslessness can instead arise from spontaneous violation of local Lorentz invariance. We construct the corresponding theory of gravity. It reproduces the Einstein-Hilbert action of general relativity at low energies and temperatures. Detectable signals occur fo...
November 6, 2011
By making use of the weak gravitational field approximation, we obtain a linearized solution of the gravitational vacuum field equation in an anisotropic spacetime. The plane-wave solution and dispersion relation of gravitational wave is presented explicitly. There is possibility that the speed of gravitational wave is larger than the speed of light and the casuality still holds. We show that the energy-momentum of gravitational wave in the ansiotropic spacetime is still well...
November 19, 2004
A simple model is constructed which allows to compute modified dispersion relations with effects from loop quantum gravity. Different quantization choices can be realized and their effects on the order of corrections studied explicitly. A comparison with more involved semiclassical techniques shows that there is agreement even at a quantitative level. Furthermore, by contrasting Hamiltonian and Lagrangian descriptions we show that possible Lorentz symmetry violations may be...
March 28, 2007
We study a theory where the presence of an extra spin-two field coupled to gravity gives rise to a phase with spontaneously broken Lorentz symmetry. In this phase gravity is massive, and the Weak Equivalence Principle is respected. The newtonian potentials are in general modified, but we identify an non-perturbative symmetry that protects them. The gravitational waves sector has a rich phenomenology: sources emit a combination of massless and massive gravitons that propagate ...
February 14, 2012
We show that the ghost degrees of freedom of Einstein gravity with a Weyl term can be eliminated by a simple mechanism that invokes local Lorentz symmetry breaking. We demonstrate how the mechanism works in a cosmological setting. The presence of the Weyl term forces a redefinition of the quantum vacuum state of the tensor perturbations. As a consequence the amplitude of their spectrum blows up when the Lorentz-violating scale becomes comparable to the Hubble radius. Such a b...
October 22, 2019
General Relativity predicts two modes for plane gravitational waves. When a tiny violation of Lorentz invariance occurs, the two gravitational wave modes are modified. We use perturbation theory to study the detailed form of the modifications to the two gravitational wave modes from the minimal Lorentz-violation coupling. The perturbation solution for the metric fluctuation up to the first order in Lorentz violation is discussed. Then, we investigate the motions of test parti...
August 17, 2004
We construct effective field theories in which gravity is modified via spontaneous breaking of local Lorentz invariance. This is a gravitational analogue of the Higgs mechanism. These theories possess additional graviton modes and modified dispersion relations. They are manifestly well-behaved in the UV and free of discontinuities of the van Dam-Veltman-Zakharov type, ensuring compatibility with standard tests of gravity. They may have important phenomenological effects on la...
March 30, 2009
Motivated by the interest raised by the problem of Lorenz-symmetry violating gauge theories in connetion with gravity models, this contribution sets out to provide a general method to systematically study the excitation spectrum of gravity actions which include a Lorentz-symmetry breaking Chern-Simons-type action term for the spin connection. A complete set of spin-type operators is found which accounts for the (Lorentz) violation parameter to all orders and graviton propagat...