December 19, 2006
Similar papers 2
April 30, 1996
We suggest a duality invariant formula for the entropy and temperature of non-extreme black holes in supersymmetric string theory. The entropy is given in terms of the duality invariant parameter of the deviation from extremality and 56 SU(8) covariant central charges. It interpolates between the entropies of Schwarzschild solution and extremal solutions with various amount of unbroken supersymmetries and therefore serves for classification of black holes in supersymmetric st...
June 9, 2004
We obtain the enropy of Schwarzschild and charged black holes in D>4 from superconformal gases that live on p=10-D dimensional brane-antibrane systems wrapped on T^p. The preperties of the strongly coupled superconformal theories such as the appearance of hidden dimensions (for p=1,4) and fractional strings (for p=5) are crucial for our results. In all cases, the Schwarzschild radius is given by the transverse fluctuations of the branes and antibranes due to the finite temper...
July 7, 2005
We examine the dynamics of extended branes, carrying lower dimensional brane charges, wrapping black holes and black hole microstates in M and Type II string theory. We show that they have a universal dispersion relation typical of threshold bound states with a total energy equal to the sum of the contributions from the charges. In near-horizon geometries of black holes, these are BPS states, and the dispersion relation follows from supersymmetry as well as properties of the ...
January 22, 2004
After recalling the definition of black holes, and reviewing their energetics and their classical thermodynamics, one expounds the conjecture of Bekenstein, attributing an entropy to black holes, and the calculation by Hawking of the semi-classical radiation spectrum of a black hole, involving a thermal (Planckian) factor. One then discusses the attempts to interpret the black-hole entropy as the logarithm of the number of quantum micro-states of a macroscopic black hole, wit...
May 16, 1996
It is known that the naive version of D-brane theory is inadequate to explain the black hole entropy in the limit in which the Schwarzschild radius becomes larger than all compactification radii. We present evidence that a more consistent description can be given in terms of strings with rescaled tensions. We show that the rescaling can be interpreted as a redshift of the tension of a fundamental string in the gravitational field of the black hole. An interesting connection i...
June 23, 2004
We develop the quasi-particle picture for Schwarzchild and far from extremal black holes. We show that the thermalization equations of the black hole is recovered from the model of branes and anti-branes. This can also be viewed as a field theory explanation of the relationship between area and entropy for these black holes. As a by product the annihilation rate of branes and anti-branes is computed.
June 23, 2008
We study a generalisation of thermodynamic geometry to degenerate quantum ground states at zero temperatures exemplified by charged extremal black holes in type II string theories. Several examples of extremal charged black holes with non degenerate thermodynamic geometries and finite but non zero state space scalar curvatures are established. These include black holes described by D1-D5-P and D2-D6-NS5-P brane systems and also two charged small black holes in Type II string ...
November 21, 1996
Using a simple hypothesis about the degrees of freedom of intersecting branes we find a microscopic counting argument that reproduces the entropy of a class of BPS black holes of type IIA string theory on general Calabi Yau three folds.
April 16, 1996
We carry out a thorough survey of entropy for a large class of $p$-branes in various dimensions. We find that the Bekenstein-Hawking entropy may be given a simple world volume interpretation only for the non-dilatonic $p$-branes, those with the dilaton constant throughout spacetime. The entropy of extremal non-dilatonic $p$-branes is non-vanishing only for the solutions preserving 1/8 of the original supersymmetries. Upon toroidal compactification these reduce to dyonic black...
July 13, 1996
We discuss the known microscopic interpretations of the Bekenstein-Hawking entropy for configurations of intersecting M-branes. In some cases the entropy scales as that of a massless field theory on the intersection. A different situation, found for configurations which reduce to 1-charge D=5 black holes or 2-charge D=4 black holes, is explained by a gas of non-critical strings at their Hagedorn temperature. We further suggest that the entropy of configurations reducing to 1-...