February 8, 2007
Similar papers 3
August 20, 2008
This is an expository paper which explores the ideas of the authors' paper "From Affine Geometry to Complex Geometry", arXiv:0709.2290. We explain the basic ideas of the latter paper by going through a large number of concrete, increasingly complicated examples.
August 10, 2020
In this article, we study mirror symmetry for pairs of singular Calabi--Yau manifolds which are double covers of toric manifolds. Their period integrals can be seen as certain `fractional' analogues of those of ordinary complete intersections. This new structure can then be used to solve their Riemann--Hilbert problems. The latter can then be used to answer definitively questions about mirror symmetry for this class of Calabi--Yau manifolds.
December 18, 2012
This paper presents the current status on modularity of Calabi-Yau varieties since the last update in 2003. We will focus on Calabi-Yau varieties of dimension at most three. Here modularity refers to at least two different types: arithmetic modularity and geometric modularity. These will include: (1) the modularity (automorphy) of Galois representations of Calabi-Yau varieties (or motives) defined over Q or number fields, (2) the modularity of solutions of Picard--Fuchs diffe...
October 23, 2016
We study the real loci of toric degenerations of complex varieties with reducible central fibre. We show that the topology of such degenerations can be explicitly described via the Kato-Nakayama space of the central fibre as a log space. We furthermore provide generalities of real structures in log geometry and their lift to Kato-Nakayama spaces. A key point of this paper is a description of the Kato-Nakayama space of a toric degeneration and its real locus, both as bundles d...
June 30, 2020
Calabi-Yau spaces, or Kahler spaces admitting zero Ricci curvature, have played a pivotal role in theoretical physics and pure mathematics for the last half-century. In physics, they constituted the first and natural solution to compactification of superstring theory to our 4-dimensional universe, primarily due to one of their equivalent definitions being the admittance of covariantly constant spinors. Since the mid-1980s, physicists and mathematicians have joined forces in c...
May 12, 2020
In this article, we investigate deformations of a Calabi-Yau manifold $Z$ in a toric variety $F$, possibly not smooth. In particular, we prove that the forgetful morphism from the Hilbert functor $H^F_Z$ of infinitesimal deformations of $Z$ in $F$ to the functor of infinitesimal deformations of $Z$ is smooth. This implies the smoothness of $H^F_Z $ at the corresponding point in the Hilbert scheme. Moreover, we give some examples and include some computations on the Hodge numb...
April 28, 2009
While Calabi-Yau hypersurfaces in toric ambient spaces provide a huge number of examples, theoretical considerations as well as applications to string phenomenology often suggest a broader perspective. With even the question of finiteness of diffeomorphism types of CY 3-folds unsettled, an important idea is Reid's conjecture that the moduli spaces are connected by certain singular transitions. We summarize the results of our recent construction of a large class of new CY spac...
July 9, 1997
This manuscript from August 1995 (revised February 1996) studies the Kaehler cone of Calabi-Yau threefolds via symplectic methods. For instance, it is shown that if two Calabi-Yau threefolds are general in complex moduli and are symplectic deformations of each other, then their Kaehler cones are the same. The results are generalizations of those in the author's previous paper "The Kaehler cone on Calabi-Yau threefolds" (Inventiones math. 107 (1992), 561-583; Erratum: Inventio...
July 6, 2000
In this paper we give a construction of Lagrangian torus fibration for Calabi-Yau hypersurface in toric variety via the method of gradient flow. Using our construction of Lagrangian torus fibration, we are able to prove the symplectic topological version of SYZ mirror conjecture for generic Calabi-Yau hypersurface in toric variety. We will also be able to give precise formulation of SYZ mirror conjecture in general (including singular locus and duality of singular fibres).
September 22, 2017
In the present paper we provide a description of complete Calabi-Yau metrics on the canonical bundle of generalized complex flag manifolds. By means of Lie theory we give an explicit description of complete Ricci-flat K\"ahler metrics obtained through the Calabi ansatz technique. We use this approach to provide several explicit examples of noncompact complete Calabi-Yau manifolds, these examples include canonical bundles of non-toric flag manifolds (e.g. Grassmann manifolds a...