March 9, 2007
Similar papers 3
May 23, 2006
We study the thermodynamics of U(N) N=4 Super Yang-Mills (SYM) on RxS^3 with non-zero chemical potentials for the SU(4) R-symmetry. We find that when we are near a point with zero temperature and critical chemical potential, N=4 SYM on RxS^3 reduces to a quantum mechanical theory. We identify three such critical regions giving rise to three different quantum mechanical theories. Two of them have a Hilbert space given by the SU(2) and SU(2|3) sectors of N=4 SYM of recent inter...
August 23, 2007
We consider large N U(N)^M thermal N=2 quiver gauge theories on S^1 x S^3. We obtain a phase diagram of the theory with R-symmetry chemical potentials, separating a low-temperature/high-chemical potential region from a high-temperature/low-chemical potential region. In close analogy with the N=4 SYM case, the free energy is of order O(1) in the low-temperature region and of order O(N^2 M) in the high-temperature phase. We conclude that the N=2 theory undergoes a first order H...
March 2, 2021
We study the large $N$ matrix model for the index of 4d $\mathcal{N}=4$ Yang-Mills theory and its truncations to understand the dual AdS$_5$ black holes. Numerical studies of the truncated models provide insights on the black hole physics, some of which we investigate analytically with the full Yang-Mills matrix model. In particular, we find many branches of saddle points which describe the known black hole solutions. We analytically construct the saddle points dual to the sm...
March 4, 2022
The interest in the thermodynamics of supersymmetric Yang-Mills started after Maldacena proposed the duality between string theory on AdS backgrounds and the large-N limit of SYM theories. One of the motivations to study the thermal properties of ${\cal N}=4$ supersymmetric Yang-Mills in four dimensions (SYM$_{4,4}$) is that at high temperatures, the weak-coupling limit of this theory has many similarities with high temperature quantum chromodynamics (QCD). In this proceeding...
August 6, 2002
We study the deconfining phase transition in 3+1 dimensional pure SU(N) Yang-Mills theory using a gauge invariant variational calculation. We generalize the variational ansatz of Phys. Rev. D52, 3719 (1995) to mixed states (density matrices) and minimize the free energy. For N > 3 we find a first order phase transition with the transition temperature of T_C = 450 Mev. Below the critical temperature the Polyakov loop has vanishing expectation value, while above T_C, its averag...
September 10, 2019
We study the bosonic matrix model obtained as the high-temperature limit of two-dimensional maximally supersymmetric SU($N$) Yang-Mills theory. So far, no consensus about the order of the deconfinement transition in this theory has been reached and this hinders progress in understanding the nature of the black hole/black string topology change from the gauge/gravity duality perspective. On the one hand, previous works considered the deconfinement transition consistent with tw...
December 12, 2017
We study phase transitions in $SU(\infty)$ gauge theories at nonzero temperature using matrix models. Our basic assumption is that the effective potential is dominated by double trace terms for the Polyakov loops. As a function of the various parameters, related to terms linear, quadratic, and quartic in the Polyakov loop, the phase diagram exhibits a universal structure. In a large region of this parameter space, there is a continuous phase transition whose order is larger t...
November 10, 2014
The partition function of general N = 2 supersymmetric SU(2) Yang-Mills theories on a four-sphere localizes to a matrix integral. We show that in the decompactification limit, and in a certain regime, the integral is dominated by a saddle point. When this takes effect, the free energy is exactly given in terms of the prepotential, $F=-R^2 Re (4\pi i {\cal F}) $, evaluated at the singularity of the Seiberg-Witten curve where the dual magnetic variable $a_D$ vanishes. We also s...
November 9, 2005
We study BPS states in a marginal deformation of super Yang-Mills on R x S^3 using a quantum mechanical system of q-commuting matrices. We focus mainly on the case where the parameter q is a root of unity, so that the AdS dual of the field theory can be associated to an orbifold of AdS_5x S^5. We show that in the large N limit, BPS states are described by density distributions of eigenvalues and we assign to these distributions a geometrical spacetime interpretation. We go be...
December 7, 2007
In order to deepen our understanding of the nature of the deconfinement phase transition for various gauge groups, we investigate SU(4) Yang-Mills theory in 2+1 dimensions. We find that the transition is weakly first order. We perform extensive Monte Carlo simulations on lattices with temporal extent N_t = 3, 4 and 5, and spatial sizes up to N_s = 20 N_t. We observe coexistence of confined and deconfined phases at the critical temperature, and finite-size scaling shows consis...