February 26, 1992
The recent interest in ``time machines'' has been largely fueled by the apparent ease with which such systems may be formed in general relativity, given relatively benign initial conditions such as the existence of traversable wormholes or of infinite cosmic strings. This rather disturbing state of affairs has led Hawking to formulate his Chronology Protection Conjecture, whereby the formation of ``time machines'' is forbidden. This paper will use several simple examples to argue that the universe appears to exhibit a ``defense in depth'' strategy in this regard. For appropriate parameter regimes Casimir effects, wormhole disruption effects, and gravitational back reaction effects all contribute to the fight against time travel. Particular attention is paid to the role of the quantum gravity cutoff. For the class of model problems considered it is shown that the gravitational back reaction becomes large before the Planck scale quantum gravity cutoff is reached, thus supporting Hawking's conjecture.
Similar papers 1
April 5, 2002
This is a brief survey of the current status of Stephen Hawking's ``chronology protection conjecture''. That is: ``Why does nature abhor a time machine?'' I'll discuss a few examples of spacetimes containing ``time machines'' (closed causal curves), the sorts of peculiarities that arise, and the reactions of the physics community. While pointing out other possibilities, this article concentrates on the possibility of ``chronology protection''. As Stephen puts it: ``It seems...
March 3, 1993
The recent renaissance of wormhole physics has led to a very disturbing observation: If traversable wormholes exist then it appears to be rather easy to to transform such wormholes into time machines. This extremely disturbing state of affairs has lead Hawking to promulgate his chronology protection conjecture. This paper continues a program begun in an earlier paper [Physical Review {\bf D47}, 554--565 (1993), hepth@xxx/9202090]. An explicit calculation of the vacuum expecta...
November 15, 1993
Calculating the van Vleck determinant in traversable wormhole spacetimes is an important ingredient in understanding the physical basis behind Hawking's chronology protection conjecture. This paper presents extensive computations of this object --- at least in the short--throat flat--space approximation. An important technical trick is to use an extension of the usual junction condition formalism to probe the full Riemann tensor associated with a thin shell of matter. Implica...
February 23, 2015
On general grounds, one may argue that a black hole stops radiation at the Planck mass, where the radiated energy is comparable to the black hole's mass. And also, it has been argued that there would be a "wormhole-like" structure, known as "space-time foam", due to large fluctuations below the Planck length. In this paper, as an explicit example, we consider an exact classical solution which represents nicely those two properties in a recently proposed quantum gravity model ...
August 28, 1996
It has been proposed that wormholes can be made to function as time-machines. This opens up the question of whether this can be accomodated within a self-consistent physics or not. In this contribution we present some quantum mechanical considerations in this respect.
December 6, 2023
It has been claimed that wormholes are just as good a prediction of Einstein's theory as black holes, but they are subject to severe restrictions from quantum field theory. The purpose of this paper is to show that the claim can be substantiated in spite of these restrictions.
April 3, 2019
We argue that one can nucleate a traversable wormhole via a nonperturbative process in quantum gravity. To support this, we construct spacetimes in which there are instantons giving a finite probability for a test cosmic string to break and produce two particles on its ends. One should be able to replace the particles with small black holes with only small changes to the spacetime away from the horizons. The black holes are then created with their horizons identified, so this...
October 15, 2002
The existence of time machines, understood as spacetime constructions exhibiting physically realised closed timelike curves (CTCs), would raise fundamental problems with causality and challenge our current understanding of classical and quantum theories of gravity. In this paper, we investigate three proposals for time machines which share some common features: cosmic strings in relative motion, where the conical spacetime appears to allow CTCs; colliding gravitational shock ...
July 29, 2021
We use holography to examine the response of interacting quantum fields to the appearance of closed timelike curves in a dynamically evolving background that initially does not contain them. For this purpose, we study a family of two-dimensional spacetimes that model very broad classes of wormhole time machines. The behavior of strongly coupled conformal theories in these spacetimes is then holographically described by three-dimensional AdS bulk geometries that we explicitly ...
March 23, 2005
Wormholes have been advanced as both a method for circumventing the limitations of the speed of light as well as a means for building a time machine (to travel to the past). Thus it is argued that General Relativity may allow both of these possibilities. In this note I argue that traversable wormholes connecting otherwise causally disconnected regions, violate two of the most fundamental principles physics, namely local energy conservation and the energy-time uncertainty prin...