June 4, 1992
Similar papers 4
August 4, 2020
This paper provides a detailed study of $4$-dimensional Chern-Simons theory on $\mathbb{R}^2 \times \mathbb{C}P^1$ for an arbitrary meromorphic $1$-form $\omega$ on $\mathbb{C}P^1$. Using techniques from homotopy theory, the behaviour under finite gauge transformations of a suitably regularised version of the action proposed by Costello and Yamazaki is investigated. Its gauge invariance is related to boundary conditions on the surface defects located at the poles of $\omega$ ...
September 3, 2014
We lay down a general framework for how to construct a Topological Quantum Field Theory $Z_A$ defined on shaped triangulations of orientable 3-manifolds from any Pontryagin self-dual locally compact abelian group $A$. The partition function for a triangulated manifold is given by a state integral over the LCA $A$ of a certain combinations of functions which satisfy Faddeev's operator five term relation. In the cases where all elements of the LCA $A$ are divisible by 2 and it ...
August 3, 2010
We study topological boundary conditions in abelian Chern-Simons theory and line operators confined to such boundaries. From a mathematical point of view, their relationships are described by a certain 2-category associated to an even integer-valued symmetric bilinear form (the matrix of Chern-Simons couplings). We argue that boundary conditions correspond to Lagrangian subgroups in the finite abelian group classifying bulk line operators (the discriminant group). We describe...
May 27, 1994
We consider $SU(N)$ Yang-Mills theories in $(2n+1)$-dimensional Euclidean spacetime, where $N\geq n+1$, coupled to an even flavour number of Dirac fermions. After integration over the fermionic degrees of freedom the wave functional for the gauge field inherits a non-trivial $U(1)$-connection which we compute in the limit of infinite fermion mass. Its Chern-class turns out to be just half the flavour number so that the wave functional now becomes a section in a non-trivial co...
December 14, 1993
A new, formal, non-combinatorial approach to invariants of three-dimensional manifolds of Reshetikhin, Turaev and Witten in the framework of non-perturbative topological quantum Chern-Simons theory, corresponding to an arbitrary compact simple Lie group, is presented. A direct implementation of surgery instructions in the context of quantum field theory is proposed. An explicit form of the specialization of the invariant to the group SU(2) is derived.
February 2, 1996
An analog of Chern-Simons theory is developed in an algebro-geometric setting.
April 17, 2002
Taking as starting point a perturbative study of the classical equations of motion of the non-Abelian Chern-Simons Theory with non-dynamical sources, we search for analytical expressions for link invarians. In order to present these expressions in a manifestly diffeomorphism-invariant form, we introduce a set of differential forms associated with submanifolds in Euclidean three-space that allow us to write the link invariants as a kind of surface-dependent diffeomorphism-inva...
November 17, 1999
We consider the Non-Abelian Chern-Simons term coupled to external particles, in a gauge and diffeomorphism invariant form. The classical equations of motion are perturbativelly studied, and the on-shell action is shown to produce knot-invariants associated with the sources. The first contributions are explicitly calculated, and the corresponding knot-invariants are recognized. We conclude that the interplay between Knot Theory and Topological Field Theories is manifested not ...
November 27, 1995
The large $k$ asymptotics (perturbation series) for integrals of the form $\int_{\cal F}\mu e^{i k S}$, where $\mu$ is a smooth top form and $S$ is a smooth function on a manifold ${\cal F}$, both of which are invariant under the action of a symmetry group ${\cal G}$, may be computed using the stationary phase approximation. This perturbation series can be expressed as the integral of a top form on the space $\cM$ of critical points of $S$ mod the action of ${\cal G}$. In thi...
July 16, 2007
In this note we define Chern-Simons classes of a superconnection $D+L$ on a complex supervector bundle $E$ such that $D$ is flat and preserves the grading, and $L$ is an odd endomorphism of $E$ on a supermanifold. As an application we obtain a definition of Chern-Simons classes of a (not necessarily flat) morphism between flat vector bundles on a smooth manifold. We extend Reznikov's theorem on triviality of these classes when the manifold is a compact K\"ahler manifold or a ...