September 27, 1993
Similar papers 5
December 5, 2005
We review old and recent results on subleading contributions to black hole entropy in string theory.
December 30, 1997
A review of recent progress in string theory concerning the Bekenstein formula for black hole entropy is given. Topics discussed include p-branes, D-branes and supersymmetry; the correspondence principle; the D- and M-brane approach to black hole entropy; the D-brane analogue of Hawking radiation, and information loss; D-branes as probes of black holes; and the Matrix theory approach to charged and neutral black holes. Some introductory material is included.
December 23, 1994
In the talk different definitions of the black hole entropy are discussed and compared. It is shown that the Bekenstein-Hawking entropy $S^{BH}$ (defined by the response of the free energy of a system containing a black hole on the change of the temperature) differs from the statistical- mechanical entropy $S^{SM}=-\mbox{Tr}(\hat{\rho}\ln \hat{\rho})$ (defined by counting internal degrees of freedom of a black hole). A simple explanation of the universality of the Bekenstein-...
September 24, 1997
This is a revised and shortened version of a MSc thesis submitted to the University of Sussex, UK. An introduction into the pre-string physics of black holes and related thermodynamics is given. Then, starting with an introduction of how superstring theory is approaching the problem of black hole entropy, work on that and closely related topics like Hawking radiation and the information paradox is reviewed.
August 23, 1996
We give several pieces of evidence to show that extremal black holes cannot be obtained as limits of non-extremal black holes. We review arguments in the literature showing that the entropy of extremal black holes is zero, while that of near-extremal ones obey the Bekenstein-Hawking formula. However, from the counting of degeneracy of quantum (BPS) states of string theory the entropy of extremal stringy black holes obeys the area law. An attempt is made to reconcile these arg...
April 19, 2023
This chapter gives an overview of the quantum aspects of black holes, focusing on the black hole information problem, the counting of black hole entropy in string theory, and the emergence of spacetime in holography. It is aimed at a broad physics audience, and does not presuppose knowledge of string theory or holography.
August 5, 2010
In this note we have applied directly the Shannon formula for information theory entropy to derive the Black Hole (Bekenstein-Hawking) entropy. Our analysis is semi-classical in nature since we use the (recently proposed [8]) quantum mechanical near horizon mode functions to compute the tunneling probability that goes in to the Shannon formula, following the general idea of [5]. Our framework conforms to the information theoretic origin of Black Hole entropy, as originally pr...
December 12, 2024
We describe the puzzles that arise in the quantum theory of black holes, and explain how they are resolved in string theory. We review how the Bekenstein entropy is obtained through the count of brane bound states. We describe the fuzzball construction of black hole microstates. These states have no horizon and radiate from their surface like a normal body, so there is no information puzzle. We explain how the semiclassical approximation is violated in gravitational collapse ...
July 25, 2008
To derive black hole thermodynamics in any quantum theory of gravity, one must introduce constraints that ensure that a black hole is actually present. For a large class of black holes, the imposition of such ``horizon constraints'' allows the use of conformal field theory methods to compute the density of states, reproducing the correct Bekenstein-Hawking entropy in a nearly model-independent manner. This approach may explain the ``universality'' of black hole entropy, the f...
July 31, 1996
This thesis is devoted to trying to find a microscopic quantum description of black holes. We consider black holes in string theory which is a quantum theory of gravity. We find that the ``area law'' black hole entropy for extremal and near-extremal charged black holes arises from counting microscopic configurations. We study black holes in five and four spacetime dimensions. We calculate the Hawking temperature and give a physical picture of the Hawking decay process. Hopefu...