October 9, 2000
Special fibrations of toric varieties have been used by physicists, e.g. the school of Candelas, to construct dual pairs in the study of Het/F-theory duality. Motivated by this, we investigate in this paper the details of toric morphisms between toric varieties. In particular, a complete toric description of fibers - both generic and non-generic -, image, and the flattening stratification of a toric morphism are given. Two examples are provided to illustrate the discussions. ...
March 29, 2001
After a brief introduction into the use of Calabi--Yau varieties in string dualities, and the role of toric geometry in that context, we review the classification of toric Calabi-Yau hypersurfaces and present some results on complete intersections. While no proof of the existence of a finite bound on the Hodge numbers is known, all new data stay inside the familiar range $h_{11}+h_{12}\le 502$.
January 30, 2022
The number of rational points in toric data are given for two-parameter Calabi-Yau $n$-folds as toric hypersurfaces over finite fields $\mathbb F_p$ . We find that the fundamental period is equal to the number of rational points of the Calabi-Yau $n$-folds in zeroth order $p$-adic expansion. By analyzing the solution set of the GKZ-system given by the enhanced polyhedron, we deduce that under type II/F-theory duality the 3D and 4D Calabi-Yau manifolds have the same number of ...
June 9, 2023
Calabi-Yau manifolds can be obtained as hypersurfaces in toric varieties built from reflexive polytopes. We generate reflexive polytopes in various dimensions using a genetic algorithm. As a proof of principle, we demonstrate that our algorithm reproduces the full set of reflexive polytopes in two and three dimensions, and in four dimensions with a small number of vertices and points. Motivated by this result, we construct five-dimensional reflexive polytopes with the lowest ...
December 20, 2002
We apply a universal normal Calabi-Yau algebra to the construction and classification of compact complex $n$-dimensional spaces with SU(n) holonomy and their fibrations. This algebraic approach includes natural extensions of reflexive weight vectors to higher dimensions and a `dual' construction based on the Diophantine decomposition of invariant monomials. The latter provides recurrence formulae for the numbers of fibrations of Calabi-Yau spaces in arbitrary dimensions, whic...
June 3, 2013
An algorithm to systematically construct all Calabi-Yau elliptic fibrations realized as hypersurfaces in a toric ambient space for a given base and gauge group is described. This general method is applied to the particular question of constructing SU(5) GUTs with multiple U(1) gauge factors. The basic data consists of a top over each toric divisor in the base together with compactification data giving the embedding into a reflexive polytope. The allowed choices of compactific...
July 20, 2002
We present a universal normal algebra suitable for constructing and classifying Calabi-Yau spaces in arbitrary dimensions. This algebraic approach includes natural extensions of reflexive weight vectors to higher dimensions, related to Batyrev's reflexive polyhedra, and their n-ary combinations. It also includes a `dual' construction based on the Diophantine decomposition of invariant monomials, which provides explicit recurrence formulae for the numbers of Calabi-Yau spaces ...
January 8, 1997
We investigate topological properties of Calabi-Yau fourfolds and consider a wide class of explicit constructions in weighted projective spaces and, more generally, toric varieties. Divisors which lead to a non-perturbative superpotential in the effective theory have a very simple description in the toric construction. Relevant properties of them follow just by counting lattice points and can be also used to construct examples with negative Euler number. We study nets of tran...
November 3, 2015
We compute the Hodge numbers for the quotients of complete intersection Calabi-Yau three-folds by groups of orders divisible by 4. We make use of the polynomial deformation method and the counting of invariant K\"ahler classes. The quotients studied here have been obtained in the automated classification of V. Braun. Although the computer search found the freely acting groups, the Hodge numbers of the quotients were not calculated. The freely acting groups, $G$, that arise in...
October 10, 2023
We enumerate topologically-inequivalent compact Calabi-Yau threefold hypersurfaces. By computing arithmetic and algebraic invariants and the Gopakumar-Vafa invariants of curves, we prove that the number of distinct simply connected Calabi-Yau threefold hypersurfaces resulting from triangulations of four-dimensional reflexive polytopes is 4, 27, 183, 1,184 and 8,036 at $h^{1,1}$ = 1, 2, 3, 4, and 5, respectively. We also establish that there are ten equivalence classes of Wall...