January 26, 1998
Similar papers 2
December 10, 1997
We study the time and temperature dependent correlation functions for an impenetrable bose gas with open boundary conditions. We derive the Fredholm determinant formulae for the correlation functions, by means of the Bethe Ansatz. In the case of time independent ground state, our Fredholm determinant formulae degenerate to the one which have been obtained by the help of fermions [T. Kojima, J.Stat.Phys.Vol.88,713-(1997)]
January 8, 1997
We give the details of the calculation of the spectral functions of the 1D Hubbard model using the spin-charge factorized wave-function for several versions of the U -> +\infty limit. The spectral functions are expressed as a convolution of charge and spin dynamical correlation functions. A procedure to evaluate these correlation functions very accurately for large systems is developed, and analytical results are presented for the low energy region. These results are fully co...
May 13, 2019
We analyse the transverse dynamical two-point correlation function of the XX chain by means of a thermal form factor series. The series is rewritten in terms of the resolvent and the Fredholm determinant of an integrable integral operator. This connects it with a matrix Riemann-Hilbert problem. We express the correlation function in terms of the solution of the matrix Riemann-Hilbert problem. The matrix Riemann-Hilbert problem is then solved asymptotically in the high-tempera...
October 4, 1999
We investigate the grand potential of the one-dimensional Hubbard model in the high temperature limit, calculating the coefficients of the high temperature expansion ($\beta$-expansion) of this function up to order $\beta^4$ by an alternative method. The results derived are analytical and do not involve any perturbation expansion in the hopping constant, being valid for arbitrary density of electrons in the one-dimensional model. In the half-filled case, we compare our anal...
June 7, 2024
We study finite temperature dynamical correlation functions of the magnetization operator in the one-dimensional Ising quantum field theory. Our approach is based on a finite temperature form factor series and on a Fredholm determinant representation of the correlators. While for space-like separations the Fredholm determinant can be efficiently evaluated numerically, for the time-like region it has convergence issues inherited from the form factor series. We develop a method...
October 12, 2021
We investigate the momentum-resolved spin and charge susceptibilities, as well as the chemical potential and double occupancy in the two-dimensional Hubbard model as functions of doping, temperature and interaction strength. Through these quantities, we identify a weak-coupling regime, a strong-coupling regime with short-range correlations and an intermediate-coupling regime with long magnetic correlation lengths. In the spin channel, we observe an additional crossover from c...
January 19, 2015
Inspired by recent results in the context of AdS/CFT integrability, we reconsider the Thermodynamic Bethe Ansatz equations describing the 1D fermionic Hubbard model at finite temperature. We prove that the infinite set of TBA equations are equivalent to a simple nonlinear Riemann-Hilbert problem for a finite number of unknown functions. The latter can be transformed into a set of three coupled nonlinear integral equations defined over a finite support, which can be easily sol...
September 24, 1996
The dynamical density-density correlation function is calculated for the one-dimensional, half-filled Hubbard model extended with nearest neighbor repulsion using the Lanczos algorithm for finite size systems and analytically for large on site repulsion compared to hopping amplitudes. At the zone boundary an excitonic feature exists for any finite nearest neighbor repulsion and exhausts most of the spectral weight, even for parameters where no exciton is visible at zero momen...
July 24, 2018
Exact relations are derived for the Fermi Hubbard spectral weight function for infinite U at zero temperature in the thermodynamic limit for any dimension,any lattice structure and general hopping matrix. These relations involve moments of the spectral weight function but differ from similar work by (a) restricting the moments over the interesting low energy (lower Hubbard band) spectrum and (b) without any of the usual approximations (e.g. decoupling) for the requisite highe...
September 6, 2012
Finite-temperature T>0 transport properties of integrable and nonintegrable one-dimensional (1D) many-particle quantum systems are rather different, showing in the metallic phases ballistic and diffusive behavior, respectively. The repulsive 1D Hubbard model is an integrable system of wide physical interest. For electronic densities $n\neq1$ it is an ideal conductor, with ballistic charge transport for T larger or equal to 0. In spite that it is solvable by the Bethe ansatz, ...