ID: math/0001131

Quotients of Divisorial Toric Varieties

January 24, 2000

View on ArXiv
A. A'Campo-Neuen, J. Hausen
Mathematics
Algebraic Geometry

We consider subtorus actions on divisorial toric varieties. Here divisoriality means that the variety has many Cartier divisors like quasiprojective and smooth ones. We characterize when a subtorus action on such a toric variety admits a categorical quotient in the category of divisorial varieties. Our result generalizes previous statements for the quasiprojective case. An important tool for the proof is a universal reduction of an arbitrary toric variety to a divisorial one. This is done in terms of support maps, a notion generalizing support functions on a polytopal fan. A further essential step is the decomposition of a given subtorus invariant regular map to a divisorial variety into an invariant toric part followed by a non-toric part.

Similar papers 1