October 10, 2022
The note shows an easy way to improve E.H. Smith's packing density bound in $\mathbb{R}^3$ from $0.53835...$ to $0.54755...$ .
August 19, 2005
Sphere packings in high dimensions interest mathematicians and physicists and have direct applications in communications theory. Remarkably, no one has been able to provide exponential improvement on a 100-year-old lower bound on the maximal packing density due to Minkowski in $d$-dimensional Euclidean space $\Re^d$. The asymptotic behavior of this bound is controlled by $2^{-d}$ in high dimensions. Using an optimization procedure that we introduced earlier \cite{To02c} and a...
April 18, 2013
Finding the densest sphere packing in $d$-dimensional Euclidean space $\mathbb{R}^d$ is an outstanding fundamental problem with relevance in many fields, including the ground states of molecular systems, colloidal crystal structures, coding theory, discrete geometry, number theory, and biological systems. Numerically generating the densest sphere packings becomes very challenging in high dimensions due to an exponentially increasing number of possible sphere contacts and sphe...
March 18, 2010
The densest local packing (DLP) problem in d-dimensional Euclidean space Rd involves the placement of N nonoverlapping spheres of unit diameter near an additional fixed unit-diameter sphere such that the greatest distance from the center of the fixed sphere to the centers of any of the N surrounding spheres is minimized. Solutions to the DLP problem are relevant to the realizability of pair correlation functions for packings of nonoverlapping spheres and might prove useful in...
November 8, 2022
We study the problem of high-dimensional multiple packing in Euclidean space. Multiple packing is a natural generalization of sphere packing and is defined as follows. Let $ N>0 $ and $ L\in\mathbb{Z}_{\ge2} $. A multiple packing is a set $\mathcal{C}$ of points in $ \mathbb{R}^n $ such that any point in $ \mathbb{R}^n $ lies in the intersection of at most $ L-1 $ balls of radius $ \sqrt{nN} $ around points in $ \mathcal{C} $. Given a well-known connection with coding theory,...
January 1, 2020
In this paper we give an algorithm to round the floating point output of a semidefinite programming solver to a solution over the rationals or a quadratic extension of the rationals. We apply this to get sharp bounds for packing problems, and we use these sharp bounds to prove that certain optimal packing configurations are unique up to rotations. In particular, we show that the configuration coming from the $\mathsf{E}_8$ root lattice is the unique optimal code with minimal ...
October 18, 2001
The sphere packing problem asks for the densest packing of unit balls in d-dimensional Euclidean space. This problem has its roots in geometry, number theory and it is part of Hilbert's 18th problem. In 1958 C. A. Rogers proved a non-trivial upper bound for the density of unit ball packings in d-dimensional Euclidean space for all d>0. In 1978 Kabatjanskii and Levenstein improved this bound for large d. In fact, Rogers' bound is the presently known best bound for 43>d>3, and ...
July 13, 2015
The maximum possible number of non-overlapping unit spheres that can touch a unit sphere in $n$ dimensions is called kissing number. The problem for finding kissing numbers is closely connected to the more general problems of finding bounds for spherical codes and sphere packings. We survey old and recent results on the kissing numbers keeping the generality of spherical codes.
May 6, 2014
Many of the classic problems of coding theory are highly symmetric, which makes it easy to derive sphere-packing upper bounds and sphere-covering lower bounds on the size of codes. We discuss the generalizations of sphere-packing and sphere-covering bounds to arbitrary error models. These generalizations become especially important when the sizes of the error spheres are nonuniform. The best possible sphere-packing and sphere-covering bounds are solutions to linear programs. ...
November 8, 2022
We derive lower bounds on the maximal rates for multiple packings in high-dimensional Euclidean spaces. Multiple packing is a natural generalization of the sphere packing problem. For any $ N>0 $ and $ L\in\mathbb{Z}_{\ge2} $, a multiple packing is a set $\mathcal{C}$ of points in $ \mathbb{R}^n $ such that any point in $ \mathbb{R}^n $ lies in the intersection of at most $ L-1 $ balls of radius $ \sqrt{nN} $ around points in $ \mathcal{C} $. We study this problem for both bo...