February 15, 2002
Similar papers 5
July 12, 2018
Symmetric multiple zeta values (SMZVs) are elements in the ring of all multiple zeta values modulo the ideal generated by $\zeta(2)$ introduced by Kaneko-Zagier as counterparts of finite multiple zeta values. It is known that symmetric multiple zeta values satisfy double shuffle relations and duality relations. In this paper, we construct certain lifts of SMZVs which live in the ring generated by all multiple zeta values and $2\pi i$ as certain iterated integrals on $\mathbb{...
January 26, 2014
In their seminal paper "Double zeta values and modular forms" Gangl, Kaneko and Zagier defined a double Eisenstein series and used it to study the relations between double zeta values. One of their key ideas is to study the formal double space and apply the double shuffle relations. They also proved the double shuffle relations for the double Eisenstein series. More recently, Kaneko and Tasaka extended the double Eisenstein series to level 2, proved its double shuffle relatio...
June 26, 2013
We introduce an algebra which describes the multiplication structure of a family of q-series containing a q-analogue of multiple zeta values. The double shuffle relations are formulated in our framework. They contain a q-analogue of Hoffman's identity for multiple zeta values. We also discuss the dimension of the space spanned by the linear relations realized in our algebra.
October 18, 2016
It is conjectured that the regularized double shuffle relations give all algebraic relations among the multiple zeta values, and hence all other algebraic relations should be deduced from the regularized double shuffle relations. In this paper, we provide as many as the relations which can be derived from the regularized double shuffle relations, for example, the weighted sum formula of L. Guo and B. Xie, some evaluation formulas with even arguments and the restricted sum for...
July 18, 2023
In the present paper, we derive formulas of complex and $\ell$-adic multiple polylogarithms, which have two aspects: a duality in terms of indexes and a reflection in terms of variables. We provide an algebraic proof of these formulas by using algebraic relations between associators arising from the $S_3$-symmetry of the projective line minus three points.
December 7, 2011
This paper finds relationships between multiple logarithms with a dihedral group action on the arguments. I generalize the combinatorics developed in Gangl, Goncharov and Levin's R-deco polygon representation of multiple logarithms to find these relations. By writing multiple logarithms as iterated integrals, my arguments are valid for iterated integrals as over an arbitrary field.
August 4, 2019
We define subvarieties of $\mathcal{M}_{0,n}$ equipped with algebraic functions that are solutions to the generic double shuffle equations satisfied by multiple polylogarithms on $\mathcal{M}_{0,n}$.
November 20, 2015
Calculating multiple zeta values at arguments of any sign in a way that is compatible with both the quasi-shuffle product as well as meromorphic continuation, is commonly referred to as the renormalisation problem for multiple zeta values. We consider the set of all solutions to this problem and provide a framework for comparing its elements in terms of a free and transitive action of a particular subgroup of the group of characters of the quasi-shuffle Hopf algebra. In parti...
December 1, 2023
We introduce a new Lie-algebraic approach to explicitly construct the motivic coaction and single-valued map of multiple polylogarithms in any number of variables. In both cases, the appearance of multiple zeta values is controlled by conjugating generating series of polylogarithms with Lie-algebra generators associated with odd zeta values. Our reformulation of earlier constructions of coactions and single-valued polylogarithms preserves choices of fibration bases, exposes t...
November 30, 2021
In this paper we define a continuous version of multiple zeta functions. They can be analytically continued to meromorphic functions on $\mathbb{C}^r$ with only simple poles at some special hyperplanes. The evaluations of these functions at positive integers (continuous multiple zeta values) satisfy the shuffle product. We give a detailed analysis about the depth structure of continuous multiple zeta values. There are also sum formulas for continuous multiple zeta values. Las...