October 15, 2018
Consider the set of solutions to a system of polynomial equations in many variables. An algebraic manifold is an open submanifold of such a set. We introduce a new method for computing integrals and sampling from distributions on algebraic manifolds. This method is based on intersecting with random linear spaces. It produces i.i.d. samples, works in the presence of multiple connected components, and is simple to implement. We present applications to computational statistical ...
November 23, 2018
Consider a system $f_1(x)=0,\ldots,f_n(x)=0$ of $n$ random real polynomials in $n$ variables, where each $f_i$ has a prescribed set of terms described by a set $A\subseteq \mathbb{N}^n$ of cardinality $t$. Assuming that the coefficients of the $f_i$ are independent Gaussians of any variance, we prove that the expected number of zeros of the random system in the positive orthant is bounded from above by $\frac{1}{2^{n-1}}\binom{t}{n}$.
January 10, 2023
In this note, we study asymptotic zero distribution of multivariable full system of random polynomials with independent Bernoulli coefficients. We prove that with overwhelming probability their simultaneous zeros sets are discrete and the associated normalized empirical measure of zeros asymptotic to the Haar measure on the unit torus.
September 27, 2010
We extend results of Zeitouni-Zelditch on large deviations principles for zeros of Gaussian random polynomials $s$ in one complex variable to certain non-Gaussian ensembles that we call $P(\phi)_2$ random polynomials. The probability measures are of the form $e^{- S(f)} df$ where the actions $S(f)$ are finite dimensional analgoues of those of $P(\phi)_2$ quantum field theory. The speed and rate function are the same as in the associated Gaussian case. As a corollary, we prove...
February 7, 2009
We consider the problem of uniform sampling of points on an algebraic variety. Specifically, we develop a randomized algorithm that, given a small set of multivariate polynomials over a sufficiently large finite field, produces a common zero of the polynomials almost uniformly at random. The statistical distance between the output distribution of the algorithm and the uniform distribution on the set of common zeros is polynomially small in the field size, and the running time...
March 30, 2006
We consider a class of Gaussian random holomorphic functions, whose expected zero set is uniformly distributed over $\C^n $. This class is unique (up to multiplication by a non zero holomorphic function), and is closely related to a Gaussian field over a Hilbert space of holomorphic functions on the reduced Heisenberg group. For a fixed random function of this class, we show that the probability that there are no zeros in a ball of large radius, is less than $e^{-c_1 r^{2n+2}...
April 22, 2014
We study the expectation of the number of components $b_0(X)$ of a random algebraic hypersurface $X$ defined by the zero set in projective space $\mathbb{R}P^n$ of a random homogeneous polynomial $f$ of degree $d$. Specifically, we consider "invariant ensembles", that is Gaussian ensembles of polynomials that are invariant under an orthogonal change of variables. The classification due to E. Kostlan shows that specifying an invariant ensemble is equivalent to assigning a we...
July 7, 2020
We study the expected number of zeros of $$P_n(z)=\sum_{k=0}^n\eta_kp_k(z),$$ where $\{\eta_k\}$ are complex-valued i.i.d standard Gaussian random variables, and $\{p_k(z)\}$ are polynomials orthogonal on the unit disk. When $p_k(z)=\sqrt{(k+1)/\pi} z^k$, $k\in \{0,1,\dots, n\}$, we give an explicit formula for the expected number of zeros of $P_n(z)$ in a disk of radius $r\in (0,1)$ centered at the origin. From our formula we establish the limiting value of the expected numb...
August 13, 2002
We review some recent results on asymptotic properties of polynomials of large degree, of general holomorphic sections of high powers of positive line bundles over Kahler manifolds, and of Laplace eigenfunctions of large eigenvalue on compact Riemannian manifolds. We describe statistical patterns in the zeros, critical points and L^p norms of random polynomials and holomorphic sections, and the influence of the Newton polytope on these patterns. For eigenfunctions, we discuss...
November 21, 2017
Let \( \{\varphi_i\}_{i=0}^\infty \) be a sequence of orthonormal polynomials on the unit circle with respect to a probability measure \( \mu \). We study zero distribution of random linear combinations of the form \[ P_n(z)=\sum_{i=0}^{n-1}\eta_i\varphi_i(z), \] where \( \eta_0,\dots,\eta_{n-1} \) are i.i.d. standard Gaussian variables. We use the Christoffel-Darboux formula to simplify the density functions provided by Vanderbei for the expected number real and complex of z...