March 3, 2003
We prove that the bar construction of an $E_\infty$ algebra forms an $E_\infty$ algebra. To be more precise, we provide the bar construction of an algebra over the surjection operad with the structure of a Hopf algebra over the Barratt-Eccles operad. (The surjection operad and the Barratt-Eccles operad are classical $E_\infty$ operads.)
Similar papers 1
January 9, 2007
The goal of this memoir is to prove that the bar complex B(A) of an E-infinity algebra A is equipped with the structure of a Hopf E-infinity algebra, functorially in A. We observe in addition that such a structure is homotopically unique provided that we consider unital operads which come equipped with a distinguished 0-ary operation that represents the natural unit of the bar complex. Our constructions rely on a Reedy model category for unital Hopf operads. For our purpose w...
October 28, 2008
We proved in a previous article that the bar complex of an E-infinity algebra inherits a natural E-infinity algebra structure. As a consequence, a well-defined iterated bar construction B^n(A) can be associated to any algebra over an E-infinity operad. In the case of a commutative algebra A, our iterated bar construction reduces to the standard iterated bar complex of A. The first purpose of this paper is to give a direct effective definition of the iterated bar complexes of ...
January 4, 2006
The standard reduced bar complex B(A) of a differential graded algebra A inherits a natural commutative algebra structure if A is a commutative algebra. We address an extension of this construction in the context of E-infinity algebras. We prove that the bar complex of any E-infinity algebra can be equipped with the structure of an E-infinity algebra so that the bar construction defines a functor from E-infinity algebras to E-infinity algebras. We prove the homotopy uniquenes...
November 20, 2014
This paper studies the homotopy theory of algebras and homotopy algebras over an operad. It provides an exhaustive description of their higher homotopical properties using the more general notion of morphisms called infinity-morphisms. The method consists in using the operadic calculus to endow the category of coalgebras over the Koszul dual cooperad or the bar construction with a new type of model category structure, Quillen equivalent to that of algebras. We provide an expl...
April 14, 2020
The aim of this paper is to construct an $E_\infty$-operad inducing an $E_\infty$-coalgebra structure on chain complexes with coefficients in $\mathbb{Z}$, which is an alternative description to the $E_\infty$-coalgebra by the Barrat-Eccles operad.
September 21, 2001
A classical E-infinity operad is formed by the bar construction of the symmetric groups. Such an operad has been introduced by M. Barratt and P. Eccles in the context of simplicial sets in order to have an analogue of the Milnor FK-construction for infinite loop spaces. The purpose of this article is to prove that the associative algebra structure on the normalized cochain complex of a simplicial set extends to the structure of an algebra over the Barratt-Eccles operad. We al...
November 27, 2022
In this paper we introduce the concept of L-algebras, which can be seen as a generalization of the structure determined by the Eilenberg-Mac lane transformation and Alexander-Whitney diagonal in chain complexes. In this sense, our main result states that L-algebras are endowed with an E-infinity coalgebra struture, like the one determined by the Barrat-Eccles operad in chain complexes. This results implies that the canonical L-algebra of spaces contains as much homotopy infor...
November 23, 2020
We define a notion of homotopy Segal cooperad in the category of $ E_\infty $-algebras. This model of Segal cooperad that we define in the paper, which we call homotopy Segal $ E_\infty $-Hopf cooperad, covers examples given by the cochain complex of topological operads and provides a framework for the study of the homotopy of such objects. In a first step, we consider a category of Segal $ E_\infty $-Hopf cooperads, which consists of collections of $ E_\infty $-algebras inde...
August 21, 2018
We construct, using finitely many generating cell and relations, props in the category of CW-complexes with the property that their associated operads are models for the $E_\infty$-operad. We use one of these to construct a cellular $E_\infty$-bialgebra structure on the interval and derive from it a natural cellular $E_\infty$-coalgebra structure on the geometric realization of a simplicial set which, passing to cellular chains, recovers up to signs the Barratt-Eccles and Sur...
August 23, 2011
We define a chain map of the form $\E(k)\otimes BA^{\otimes k}\longrightarrow BA$, where $\E$ is a combinatorial $E_\infty$-operad called the sequence operad, and $BA$ is the bar complex of an $\E$-algebra $A$. We see that Steenrod-type operations derived from the chain map are equal to the corresponding operations on the cohomology of the based loop space under an isomorphism.