April 15, 2003
Similar papers 3
February 20, 2010
In this paper the author finds explicitly all finite-dimensional irreducible representations of a series of finite permutation groups that are homomorphic images of Artin braid group.
September 28, 2021
Let $C_n$ be the group of conjugating automorphisms. We study the representation $\rho$ of $C_n$, an extension of Lawrence-Krammer representation of the braid group $B_n$, defined by Valerij G. Bardakov. As Bardakov proved that the representation $\rho$ is unfaithful for $n \geq 5$, the cases $n=3,4$ remain open. In our work, we make attempts towards the faithfulness of $\rho$ in the case $n=3$.
September 24, 2008
For any n>3, we give a family of finite dimensional irreducible representations of the braid group B_n. Moreover, we give a subfamily parametrized by 0<m<n of dimension the combinatoric number (n,m). The representation obtained in the case m=1 is equivalent to the Standard representation.
April 26, 2022
While much is known about the faithfulness of the Burau representation, the problem remains open for the Gassner representation for every $B_n$ with $n\geq 4$. We first find the definition of the Colored-Burau representation of Ainshel, Ainshel, Goldfeld, and Lemieux and we show that this is equivalent, when restricted to the pure braid subgroup, to the Gassner representation. The methods of Abdulrahim and Knudson require analysis within the lower central series of a free sub...
September 21, 2016
We show that the Lawrence--Krammer representation can be obtained as the quantization of the symmetric square of the Burau representation. This connection allows us to construct new representations of braid groups
September 13, 2004
This article is about Artin's braid group and its role in knot theory. We set ourselves two goals: (i) to provide enough of the essential background so that our review would be accessible to graduate students, and (ii) to focus on those parts of the subject in which major progress was made, or interesting new proofs of known results were discovered, during the past 20 years. A central theme that we try to develop is to show ways in which structure first discovered in the brai...
June 27, 2000
We give an exposition of the work of Bigelow and Krammer who proved that the Artin braid groups are linear.
July 15, 1994
In this paper we define a new family of groups which generalize the {\it classical braid groups on} $\C $. We denote this family by $\{B_n^m\}_{n \ge m+1}$ where $n,m \in \N$. The family $\{ B_n^1 \}_{n \in \N}$ is the set of classical braid groups on $n$ strings. The group $B_n^m$ is the set of motions of $n$ unordered points in $\C^m$, so that at any time during the motion, each $m+1$ of the points span the whole of $\C^m$ as an affine space. There is a map from $B_n^m$ to ...
April 1, 1993
In this article we shall give an account of certain developments in knot theory which followed upon the discovery of the Jones polynomial in 1984. The focus of our account will be recent glimmerings of understanding of the topological meaning of the new invariants. A second theme will be the central role that braid theory has played in the subject. A third will be the unifying principles provided by representations of simple Lie algebras and their universal enveloping algebra...
April 29, 2004
E. Artin described all irreducible representations of the braid group B_k to the symmetric group S(k). We strengthen some of his results and, moreover, exhibit a complete picture of homomorphisms of B_k to S(n) for n<2k+1. We show that the image of such ahomomorphism f is cyclic whenever either (*) n<k\ne 4 or (**) f is irreducible and 6<k<n<2k. For k>6 there exist, up to conjugation, exactly 3 irreducible representations of B_k into S(2k) with non-cyclic images but they all ...