ID: math/0304217

A sum-product estimate in fields of prime order

April 16, 2003

View on ArXiv
S. V. Konyagin
Mathematics
Number Theory

Let q be a prime, A be a subset of a finite field $F=\Bbb Z/q\Bbb Z$, $|A|<\sqrt{|F|}$. We prove the estimate $\max(|A+A|,|A\cdot A|)\ge c|A|^{1+\epsilon}$ for some $\epsilon>0$ and c>0. This extends the result of J. Bourgain, N. Katz, and T. Tao.

Similar papers 1