September 6, 2018
We show that there exists an absolute constant $c > 0$, such that, for any finite set $A$ of quaternions, \[ \max\{|A+A, |AA| \} \gtrsim |A|^{4/3 + c}. \] This generalizes a sum-product bound for real numbers proved by Konyagin and Shkredov.
December 1, 2017
We prove new results on additive properties of finite sets $A$ with small multiplicative doubling $|AA|\leq M|A|$ in the category of real/complex sets as well as multiplicative subgroups in the prime residue field. The improvements are based on new combinatorial lemmata, which may be of independent interest. Our main results are the inequality $$ |A-A|^3|AA|^5 \gtrsim |A|^{10}, $$ over the reals, "redistributing" the exponents in the textbook Elekes sum-product inequality a...
November 28, 2007
We study a Szemer\'edi-Trotter type theorem in finite fields. We then use this theorem to obtain an improved sum-product estimate in finite fields.
December 5, 2018
We adapt the approach of Rudnev, Shakan, and Shkredov to prove that in an arbitrary field $\mathbb{F}$, for all $A \subset \mathbb{F}$ finite with $|A| < p^{1/4}$ if $p:= Char(\mathbb{F})$ is positive, we have $$|A(A+1)| \gtrsim |A|^{11/9}, \qquad |AA| + |(A+1)(A+1)| \gtrsim |A|^{11/9}.$$ This improves upon the exponent of $6/5$ given by an incidence theorem of Stevens and de Zeeuw.
September 9, 2020
Let $A$ be a subset of a finite field $\mathbb{F}$. When $\mathbb{F}$ has prime order, we show that there is an absolute constant $c > 0$ such that, if $A$ is both sum-free and equal to the set of its multiplicative inverses, then $|A| < (0.25 - c)|\mathbb{F}| + o(|\mathbb{F}|)$ as $|\mathbb{F}| \rightarrow \infty$. We contrast this with the result that such sets exist with size at least $0.25|\mathbb{F}| - o(|\mathbb{F}|)$ when $\mathbb{F}$ has characteristic $2$.
February 25, 2018
In this paper we obtain a series of asymptotic formulae in the sum--product phenomena over the prime field $\mathbf{F}_p$. In the proofs we use usual incidence theorems in $\mathbf{F}_p$, as well as the growth result in ${\rm SL}_2 (\mathbf{F}_p)$ due to Helfgott. Here some of our applications: $\bullet~$ a new bound for the number of the solutions to the equation $(a_1-a_2) (a_3-a_4) = (a'_1-a'_2) (a'_3-a'_4)$, $\,a_i, a'_i\in A$, $A$ is an arbitrary subset of $\mathbf{F}_...
September 30, 2009
In this paper the authors study set expansion in finite fields. Fourier analytic proofs are given for several results recently obtained by Solymosi, Vinh and Vu using spectral graph theory. In addition, several generalizations of these results are given. In the case that $A$ is a subset of a prime field $\mathbb F_p$ of size less than $p^{1/2}$ it is shown that $|\{a^2+b:a,b \in A\}|\geq C |A|^{147/146}$, where $|\cdot|$ denotes the cardinality of the set and $C$ is an abso...
July 2, 2016
We prove that if $G$ is an Abelian group and $A_1,\ldots,A_k \subseteq G$ satisfy $m A_i=G$ (the $m$-fold sumset), then $A_1+\ldots+A_k=G$ provided that $k \ge c_m \log n$. This generalizes a result of Alon, Linial, and Meshulam [Additive bases of vector spaces over prime fields. J. Combin. Theory Ser. A, 57(2):203--210, 1991] regarding the so called additive bases.
December 21, 2015
Let $F$ be a field of characteristic $p>2$ and $A\subset F$ have sufficiently small cardinality in terms of $p$. We improve the state of the art of a variety of sum-product type inequalities. In particular, we prove that $$ |AA|^2|A+A|^3 \gg |A|^6,\qquad |A(A+A)|\gg |A|^{3/2}. $$ We also prove several two-variable extractor estimates: ${\displaystyle |A(A+1)| \gg|A|^{9/8},}$ $$ |A+A^2|\gg |A|^{11/10},\; |A+A^3|\gg |A|^{29/28}, \; |A+1/A|\gg |A|^{31/30}.$$ Besides, we addres...
May 17, 2008
In a recent paper \cite{Gl} A. Glibichuk proved that if $A,B$ are subsets of an arbitrary finite filed $\F_q$, such that $|A||B|>q$, then $16AB = \F_q$. We improve this to $10AB = \F_q.$