February 17, 2004
Similar papers 2
May 22, 2020
We improve the best known sum-product estimates over the reals. We prove that \[ \max(|A+A|,|AA|)\geq |A|^{\frac{4}{3} + \frac{2}{1167} - o(1)}\,, \] for a finite $A\subset \mathbb R$, following a streamlining of the arguments of Solymosi, Konyagin and Shkredov. We include several new observations to our techniques. Furthermore, \[ |AA+AA|\geq |A|^{\frac{127}{80} - o(1)}\,. \] Besides, for a convex set $A$ we show that \[ |A+A|\geq |A|^{\frac{30}{19}-o(1)}\,. \] This paper ...
February 28, 2024
Given a set of integers $A$ and an integer $k$, write $A+k\cdot A$ for the set $\{a+kb:a\in A,b\in A\}$. Hanson and Petridis showed that if $|A+A|\le K|A|$ then $|A+2\cdot A|\le K^{2.95}|A|$. At a presentation of this result, Petridis stated that the highest known value for $\frac{\log(|A+2\cdot A|/|A|)}{\log(|A+A|/|A|)}$ (bounded above by 2.95) was $\frac{\log 4}{\log 3}$. We show that, for all $\epsilon>0$, there exist $A$ and $K$ with $|A+A|\le K|A|$ but with $|A+2\cdot A|...
June 7, 2016
We prove that finite sets of real numbers satisfying $|AA| \leq |A|^{1+\epsilon}$ with sufficiently small $\epsilon > 0$ cannot have small additive bases nor can they be written as a set of sums $B+C$ with $|B|, |C| \geq 2$. The result can be seen as a real analog of the conjecture of S\'ark\"ozy that multiplicative subgroups of finite fields of prime order are additively irreducible.
December 22, 2013
This paper considers various formulations of the sum-product problem. It is shown that, for a finite set $A\subset{\mathbb{R}}$, $$|A(A+A)|\gg{|A|^{\frac{3}{2}+\frac{1}{178}}},$$ giving a partial answer to a conjecture of Balog. In a similar spirit, it is established that $$|A(A+A+A+A)|\gg{\frac{|A|^2}{\log{|A|}}},$$ a bound which is optimal up to constant and logarithmic factors. We also prove several new results concerning sum-product estimates and expanders, for example, s...
July 13, 2023
For $A\subseteq \mathbb{R}$, let $A+A=\{a+b: a,b\in A\}$ and $AA=\{ab: a,b\in A\}$. For $k\in \mathbb{N}$, let $SP(k)$ denote the minimum value of $\max\{|A+A|, |AA|\}$ over all $A\subseteq \mathbb{N}$ with $|A|=k$. Here we establish $SP(k)=3k-3$ for $2\leq k \leq 7$, the $k=7$ case achieved for example by $\{1,2,3,4,6,8,12\}$, while $SP(k)=3k-2$ for $k=8,9$, the $k=9$ case achieved for example by $\{1,2,3,4,6,8,9,12,16\}$. For $4\leq k \leq 7$, we provide two proofs using di...
February 20, 2009
Let $A$ and $B$ be finite subsets of $\mathbb{C}$ such that $|B|=C|A|$. We show the following variant of the sum product phenomenon: If $|AB|<\alpha|A|$ and $\alpha \ll \log |A|$, then $|kA+lB|\gg |A|^k|B|^l$. This is an application of a result of Evertse, Schlickewei, and Schmidt on linear equations with variables taking values in multiplicative groups of finite rank, in combination with an earlier theorem of Ruzsa about sumsets in $\mathbb{R}^d$. As an application of the ca...
April 10, 2018
We show that if A is a finite set of integers then it has a subset S of size \log^{1+c} |A| (c>0 absolute) such that s+s' is never in A when s and s' are distinct elements of S.
January 31, 2018
It is established that there exists an absolute constant $c>0$ such that for any finite set $A$ of positive real numbers $$|AA+A| \gg |A|^{\frac{3}{2}+c}.$$ On the other hand, we give an explicit construction of a finite set $A \subset \mathbb R$ such that $|AA+A|=o(|A|^2)$, disproving a conjecture of Balog.
January 29, 2003
Let $A$ be a subset of a finite field $F := \Z/q\Z$ for some prime $q$. If $|F|^\delta < |A| < |F|^{1-\delta}$ for some $\delta > 0$, then we prove the estimate $|A+A| + |A.A| \geq c(\delta) |A|^{1+\eps}$ for some $\eps = \eps(\delta) > 0$. This is a finite field analogue of a result of Erdos and Szemeredi. We then use this estimate to prove a Szemeredi-Trotter type theorem in finite fields, and obtain a new estimate for the Erdos distance problem in finite fields, as well as...
December 9, 2020
We give an improved bound on the famed sum-product estimate in a field of residue class modulo $p$ ($\mathbb{F}_{p}$) by Erd\H{o}s and Szemeredi, and a non-empty set $A \subset \mathbb{F}_{p}$ such that: $$ \max \{|A+A|,|A A|\} \gg \min \left\{\frac{|A|^{15 / 14} \max \left\{1,|A|^{1 / 7} p^{-1 / 14}\right\}}{(\log |A|)^{2 / 7}}, \frac{|A|^{11 / 12} p^{1 / 12}}{(\log |A|)^{1 / 3}}\right\}, $$ and more importantly: $$\max \{|A+A|,|A A|\} \gg \frac{|A|^{15 / 14}}{(\log |A|)^{2 ...