October 5, 2004
The goal of this paper is to provide theorems on convergence rates of posterior distributions that can be applied to obtain good convergence rates in the context of density estimation as well as regression. We show how to choose priors so that the posterior distributions converge at the optimal rate without prior knowledge of the degree of smoothness of the density function or the regression function to be estimated.
Similar papers 1
January 15, 2012
Bounds on Bayesian posterior convergence rates, assuming the prior satisfies both local and global support conditions, are now readily available. In this paper we explore, in the context of density estimation, Bayesian convergence rates assuming only local prior support conditions. Our results give optimal rates under minimal conditions using very simple arguments.
September 29, 2012
Frequentist-style large-sample properties of Bayesian posterior distributions, such as consistency and convergence rates, are important considerations in nonparametric problems. In this paper we give an analysis of Bayesian asymptotics based primarily on predictive densities. Our analysis is unified in the sense that essentially the same approach can be taken to develop convergence rate results in iid, mis-specified iid, independent non-iid, and dependent data cases.
August 19, 2015
In this paper, we study a class of non-parametric density estimators under Bayesian settings. The estimators are piecewise constant functions on binary partitions. We analyze the concentration rate of the posterior distribution under a suitable prior, and demonstrate that the rate does not directly depend on the dimension of the problem. This paper can be viewed as an extension of a parallel work where the convergence rate of a related sieve MLE was established. Compared to t...
April 17, 2008
We study the asymptotic behavior of posterior distributions. We present general posterior convergence rate theorems, which extend several results on posterior convergence rates provided by Ghosal and Van der Vaart (2000), Shen and Wasserman (2001) and Walker, Lijor and Prunster (2007). Our main tools are the Hausdorff $\alpha$-entropy introduced by Xing and Ranneby (2008) and a new notion of prior concentration, which is a slight improvement of the usual prior concentration p...
October 6, 2010
We consider heteroscedastic nonparametric regression models, when both the mean function and variance function are unknown and to be estimated with nonparametric approaches. We derive convergence rates of posterior distributions for this model with different priors, including splines and Gaussian process priors. The results are based on the general ones on the rates of convergence of posterior distributions for independent, non-identically distributed observations, and are es...
July 8, 2014
In the need for low assumption inferential methods in infinite-dimensional settings, Bayesian adaptive estimation via a prior distribution that does not depend on the regularity of the function to be estimated nor on the sample size is valuable. We elucidate relationships among the main approaches followed to design priors for minimax-optimal rate-adaptive estimation meanwhile shedding light on the underlying ideas.
April 19, 2016
In high-dimensional problems, choosing a prior distribution such that the corresponding posterior has desirable practical and theoretical properties can be challenging. This begs the question: can the data be used to help choose a good prior? In this paper, we develop a general strategy for constructing a data-driven or empirical prior and sufficient conditions for the corresponding posterior distribution to achieve a certain concentration rate. The idea is that the prior sho...
January 11, 2010
In this paper, we investigate the asymptotic properties of nonparametric Bayesian mixtures of Betas for estimating a smooth density on $[0,1]$. We consider a parametrization of Beta distributions in terms of mean and scale parameters and construct a mixture of these Betas in the mean parameter, while putting a prior on this scaling parameter. We prove that such Bayesian nonparametric models have good frequentist asymptotic properties. We determine the posterior rate of concen...
August 1, 2007
We study the rate of convergence of posterior distributions in density estimation problems for log-densities in periodic Sobolev classes characterized by a smoothness parameter p. The posterior expected density provides a nonparametric estimation procedure attaining the optimal minimax rate of convergence under Hellinger loss if the posterior distribution achieves the optimal rate over certain uniformity classes. A prior on the density class of interest is induced by a prior ...
January 26, 2017
Non-linear latent variable models have become increasingly popular in a variety of applications. However, there has been little study on theoretical properties of these models. In this article, we study rates of posterior contraction in univariate density estimation for a class of non-linear latent variable models where unobserved U(0,1) latent variables are related to the response variables via a random non-linear regression with an additive error. Our approach relies on cha...