October 16, 2004
In the last decennia two generalizations of the Hopf algebra of symmetric functions have appeared and shown themselves important, the Hopf algebra of noncommutative symmetric functions NSymm and the Hopf algebra of quasisymmetric functions QSymm. It has also become clear that it is important to understand the noncommutative versions of such important structures as Symm the Hopf algebra of symmetric functions. Not least because the right noncommmutative versions are often more beautiful than the commutaive ones (not all cluttered up with counting coefficients). NSymm and QSymm are not truly the full noncommutative generalizations. One is maximally noncommutative but cocommutative, the other is maximally non cocommutative but commutative. There is a common, selfdual generalization, the Hopf algebra of permutations of Malvenuto, Poirier, and Reutenauer (MPR). This one is, I feel, best understood as a Hopf algebra of endomorphisms. In any case, this point of view suggests vast generalizations leading to the Hopf algebras of endomorphisms and word Hopf algebras with which this paper is concerned. This point of view also sheds light on the somewhat mysterious formulas of MPR and on the question where all the extra structure (such as autoduality) comes from. The paper concludes with a few sections on the structure of MPR and the question of algebra retractions of the natural inclusion of Hopf algebras of NSymm into MPR and section of the naural projection of MPR onto QSymm.
Similar papers 1
October 21, 2004
Two important generalizations of the Hopf algebra of symmetric functions are the Hopf algebra of noncommutative symmetric functions and its graded dual the Hopf algebra of quasisymmetric functions. A common generalization of the latter is the selfdual Hopf algebra of permutations (MPR Hopf algebra). This latter Hopf algebra can be seen as a Hopf algebra of endomorphisms of a Hopf algebra. That turns out to be a fruitful way of looking at things and gives rise to wide ranging ...
March 11, 2002
We analyze the structure of the Malvenuto-Reutenauer Hopf algebra of permutations in detail. We give explicit formulas for its antipode, prove that it is a cofree coalgebra, determine its primitive elements and its coradical filtration and show that it decomposes as a crossed product over the Hopf algebra of quasi-symmetric functions. We also describe the structure constants of the multiplication as a certain number of facets of the permutahedron. Our results reveal a close r...
September 30, 2014
These notes -- originating from a one-semester class by their second author at the University of Minnesota -- survey some of the most important Hopf algebras appearing in combinatorics. After introducing coalgebras, bialgebras and Hopf algebras in general, we study the Hopf algebra of symmetric functions, including Zelevinsky's axiomatic characterization of it as a "positive self-adjoint Hopf algebra" and its application to the representation theory of symmetric and (briefly)...
March 27, 2002
We analyze the structure of the Malvenuto-Reutenauer Hopf algebra of permutations in detail. We give explicit formulas for its antipode, prove that it is a cofree coalgebra, determine its primitive elements and its coradical filtration, and show that it decomposes as a crossed product over the Hopf algebra of quasi-symmetric functions. In addition, we describe the structure constants of the multiplication as a certain number of facets of the permutahedron. As a consequence we...
May 11, 2005
We introduce the Hopf algebra of uniform block permutations and show that it is self-dual, free, and cofree. These results are closely related to the fact that uniform block permutations form a factorizable inverse monoid. This Hopf algebra contains the Hopf algebra of permutations of Malvenuto and Reutenauer and the Hopf algebra of symmetric functions in non-commuting variables of Gebhard, Rosas, and Sagan.
October 21, 2004
This paper is concerned with two generalizations of the Hopf algebra of symmetric functions that have more or less recently appeared. The Hopf algebra of noncommutative symmetric functions and its dual, the Hopf algebra of quasisymmetric functions. The focus is on the incredibly rich structure of the Hopf algebra of symmetric functions and the question of which structures and properties have good analogues for the noncommutative symmetric functions and/or the quasisymmetric f...
December 29, 2019
This paper builds on two covering Hopf algebras of the Hopf algebra QSym of quasi-symmetric functions, with linear bases parameterized by compositions. One is the Malvenuto-Reutenauer Hopf algebra SSym of permutations, mapped onto QSym by taking descents of permutations. The other one is the recently introduced Hopf algebra RQSym of weak quasi-symmetric functions, mapped onto QSym by extracting compositions from weak compositions. We extend these two surjective Hopf algebra...
September 19, 2017
In this article we study the packed words Hopf algebra WMat introduced by Duchamp, Hoang-Nghia et Tanasa. We start by explaining that WMat is not cofree, giving its antipode and describing its graded dual. We consider then a Hopf sub-algebra of permutations called $\mathfrak{S}\mathcal{H}$. Its graded dual $\mathfrak{S}\mathcal{H}^\circledast$ has a quadri-algebra structure, so it has a double dendriform algebra structure too. Thereafter, we introduce ISPW, a Hopf algebra of ...
May 14, 2012
We focus in this text on the adaptation to the study of shuffles of the main combinatorial tool in the theory of free Lie algebras, namely the existence of a universal algebra of endomorphisms for tensor and other cocommutative Hopf algebras: the family of Solomon's descent algebras of type A. We show that there exists similarly a natural endomorphism algebra for commutative shuffle algebras, which is a natural extension of the Malvenuto-Reutenauer Hopf algebra of permutation...
October 13, 2011
Let A be an associative algebra (or any other kind of algebra for that matter). A derivation on A is an endomorphism \del of the underlying Abelian group of A such that \del(ab)=a(\del b)+(\del a)b for all a,b\in A (1.1) A Hasse-Schmidt derivation is a sequence (d_0=id,d_1,d_2,...,d_n,...) of endomorphisms of the underlying Abelian group such that for all n \ge 1 d_n(ab)= \sum_{i=0}^n (d_ia)(d_{n-i}b) (1.2) Note that d_1 is a derivation as defined by (1.1). The individual...