ID: math/0503113

Large character sums: Pretentious characters and the Polya-Vinogradov Theorem

March 6, 2005

View on ArXiv
Andrew Granville, K. Soundararajan
Mathematics
Number Theory

In 1918 Polya and Vinogradov gave an upper bound for the maximal size of character sums which still remains the best known general estimate. One of the main results of this paper provides a substantial improvement of the Polya-Vinogradov bound for characters of odd, bounded order. In 1977 Montgomery and Vaughan showed how the Polya-Vinogradov inequality may be sharpened assuming the GRH. We give a simple proof of their estimate, and provide an improvement for characters of odd, bounded order. The paper also gives characterizations of the characters for which the maximal character sum is large, and finds a hidden structure among these characters.

Similar papers 1