January 13, 2022
The failure of the Euclidean norm to reliably distinguish between nearby and distant points in high dimensional space is well-known. This phenomenon of distance concentration manifests in a variety of data distributions, with iid or correlated features, including centrally-distributed and clustered data. Unsupervised learning based on Euclidean nearest-neighbors and more general proximity-oriented data mining tasks like clustering, might therefore be adversely affected by dis...
December 8, 2020
High-dimensional data clustering has become and remains a challenging task for modern statistics and machine learning, with a wide range of applications. We consider in this work the powerful discriminative latent mixture model, and we extend it to the Bayesian framework. Modeling data as a mixture of Gaussians in a low-dimensional discriminative subspace, a Gaussian prior distribution is introduced over the latent group means and a family of twelve submodels are derived cons...
August 28, 2013
A method for dimension reduction with clustering, classification, or discriminant analysis is introduced. This mixture model-based approach is based on fitting generalized hyperbolic mixtures on a reduced subspace within the paradigm of model-based clustering, classification, or discriminant analysis. A reduced subspace of the data is derived by considering the extent to which group means and group covariances vary. The members of the subspace arise through linear combination...
March 23, 2023
Creating low dimensional representations of a high dimensional data set is an important component in many machine learning applications. How to cluster data using their low dimensional embedded space is still a challenging problem in machine learning. In this article, we focus on proposing a joint formulation for both clustering and dimensionality reduction. When a probabilistic model is desired, one possible solution is to use the mixture models in which both cluster indicat...
March 5, 2012
In many real-world problems, we are dealing with collections of high-dimensional data, such as images, videos, text and web documents, DNA microarray data, and more. Often, high-dimensional data lie close to low-dimensional structures corresponding to several classes or categories the data belongs to. In this paper, we propose and study an algorithm, called Sparse Subspace Clustering (SSC), to cluster data points that lie in a union of low-dimensional subspaces. The key idea ...
March 16, 2015
In this paper, we consider clustering based on principal component analysis (PCA) for high-dimension, low-sample-size (HDLSS) data. We give theoretical reasons why PCA is effective for clustering HDLSS data. First, we derive a geometric representation of HDLSS data taken from a two-class mixture model. With the help of the geometric representation, we give geometric consistency properties of sample principal component scores in the HDLSS context. We develop ideas of the geome...
April 2, 2022
Clustering can be defined as the process of assembling objects into a number of groups whose elements are similar to each other in some manner. As a technique that is used in many domains, such as face clustering, plant categorization, image segmentation, document classification, clustering is considered one of the most important unsupervised learning problems. Scientists have surveyed this problem for years and developed different techniques that can solve it, such as k-mean...
January 14, 2015
The parsimonious Gaussian mixture models, which exploit an eigenvalue decomposition of the group covariance matrices of the Gaussian mixture, have shown their success in particular in cluster analysis. Their estimation is in general performed by maximum likelihood estimation and has also been considered from a parametric Bayesian prospective. We propose new Dirichlet Process Parsimonious mixtures (DPPM) which represent a Bayesian nonparametric formulation of these parsimoniou...
May 28, 2018
This paper introduces a new clustering technique, called {\em dimensional clustering}, which clusters each data point by its latent {\em pointwise dimension}, which is a measure of the dimensionality of the data set local to that point. Pointwise dimension is invariant under a broad class of transformations. As a result, dimensional clustering can be usefully applied to a wide range of datasets. Concretely, we present a statistical model which estimates the pointwise dimensio...
March 21, 2013
As data sets continue to grow in size and complexity, effective and efficient techniques are needed to target important features in the variable space. Many of the variable selection techniques that are commonly used alongside clustering algorithms are based upon determining the best variable subspace according to model fitting in a stepwise manner. These techniques are often computationally intensive and can require extended periods of time to run; in fact, some are prohibit...