December 17, 2010
In this article, we give an elementary construction of homological invariants of links presented by braid closures. The Euler characteristic of this complex is equal to quantum polynomial invariant of link.
January 21, 2014
In two previous papers, the author showed how to decompose the Khovanov homology of a link $\mathcal{L}$ into the algebraic pairing of a type D structure and a type A structure (as defined in bordered Floer homology), whenever a diagram for $\mathcal{L}$ is decomposed into the union of two tangles. Since Khovanov homology is the categorification of a version of the Jones polynomial, it is natural to ask what the type A and type D structures categorify, and how their pairing i...
September 8, 1995
We construct a polynomial invariant, for links in a Seifert fibered or atoroidal rational homology 3-sphere, which generalizes the 2-variable Jones polynomial (HOMFLY). As a consequence, we show that the dual of the HOMFLY skein module of a homotopy 3-sphere is isomorpic to that of the genuine 3-sphere .
February 12, 2018
We use categorical annular evaluation to give a uniform construction of both $\mathfrak{sl}_n$ and HOMFLYPT Khovanov-Rozansky link homology, as well as annular versions of these theories. Variations on our construction yield $\mathfrak{gl}_{-n}$ link homology, i.e. a link homology theory associated to the Lie superalgebra $\mathfrak{gl}_{0|n}$, both for links in $S^3$ and in the thickened annulus. In the $n=2$ case, this produces a categorification of the Jones polynomial tha...
July 4, 2014
This paper will be an exposition of the Kauffman bracket polynomial model of the Jones polynomial, tangle methods for computing the Jones polynomial, and the use of these methods to produce non-trivial links that cannot be detected by the Jones polynomial.
January 13, 2020
The Jones polynomial and Khovanov homology of a classical link are invariants that depend upon an initial choice of orientation for the link. In this paper, we give a Khovanov homology theory for unoriented virtual links. The graded Euler characteristic of this homology is proportional to a similarly-defined unoriented Jones polynomial for virtual links, which is a new invariant in the category of non-classical virtual links. The unoriented Jones polynomial continues to satis...
September 21, 2004
Khovanov defined graded homology groups for links L in R^3 and showed that their polynomial Euler characteristic is the Jones polynomial of L. Khovanov's construction does not extend in a straightforward way to links in I-bundles M over surfaces F not D^2 (except for the homology with Z/2 coefficients only). Hence, the goal of this paper is to provide a nontrivial generalization of his method leading to homology invariants of links in M with arbitrary rings of coefficients. A...
July 3, 2013
This thesis splits into two major parts. The connection between the two parts is the notion of "categorification" which we shortly explain/recall in the introduction. In the first part of this thesis we extend Bar-Natan's cobordism based categorification of the Jones polynomial to virtual links. Our topological complex allows a direct extension of the classical Khovanov complex (h=t=0), the variant of Lee (h=0,t=1) and other classical link homologies. We show that our const...
March 11, 2013
Given any diagram of a link, we define on the cube of Kauffman's states a "2-complex" whose homology is an invariant of the associated framed links, and such that the graded Euler characteristic reproduces the unnormalized Kauffman bracket. This includes a categorification of brackets skein relation. Then we incorporate the orientation information and get a further complex on the same cube that gives rise to a new invariant homology for oriented links, so that the graded Eule...
July 28, 2022
In 1999, Khovanov showed that a link invariant known as the Jones polynomial is the Euler characteristic of a homology theory. The knot categorification problem is to find a general construction of knot homology groups, and to explain their meaning -- what are they homologies of? Homological mirror symmetry, formulated by Kontsevich in 1994, naturally produces hosts of homological invariants. Typically though, it leads to invariants which have no particular interest outside...