October 26, 2006
We prove that critical multitype Galton-Watson trees converge after rescaling to the Brownian continuum random tree, under the hypothesis that the offspring distribution has finite covariance matrices. Our study relies on an ancestral decomposition for marked multitype trees. We then couple the genealogical structure with a spatial motion, whose step distribution may depend on the structure of the tree in a local way, and show that the resulting discrete spatial trees converge once suitably rescaled to the Brownian snake, under some suitable moment assumptions.
Similar papers 1
March 14, 2005
We consider Galton-Watson trees associated with a critical offspring distribution and conditioned to have exactly $n$ vertices. These trees are embedded in the real line by affecting spatial positions to the vertices, in such a way that the increments of the spatial positions along edges of the tree are independent variables distributed according to a symmetric probability distribution on the real line. We then condition on the event that all spatial positions are nonnegative...
January 22, 2008
We consider branching random walks built on Galton--Watson trees with offspring distribution having a bounded support, conditioned to have $n$ nodes, and their rescaled convergences to the Brownian snake. We exhibit a notion of ``globally centered discrete snake'' that extends the usual settings in which the displacements are supposed centered. We show that under some additional moment conditions, when $n$ goes to $+\infty$, ``globally centered discrete snakes'' converge to t...
June 14, 2006
We consider branching random walks built on Galton-Watson trees with offspring distribution having a bounded support, conditioned to have $n$ nodes, and their rescaled convergences to the Brownian snake. We exhibit a notion of "globally centered discrete snake'' that extends the usual settings in which the displacements are supposed centered. We show that under some additional moment conditions, when $n$ goes to $+\infty$, "globally centered discrete snakes'' converge to the ...
December 26, 2018
In arXiv:1609.05666v1 [math.PR] a functional limit theorem was proved. It states that symmetric processes associated with resistance metric measure spaces converge when the underlying spaces converge with respect to the Gromov-Hausdorff-vague topology, and a certain uniform recurrence condition is satisfied. Such a theorem finds particularly nice applications if the resistance metric measure space is a metric measure tree. To illustrate this, we state functional limit theorem...
May 16, 2016
In this work, we study asymptotics of multitype Galton-Watson trees with finitely many types. We consider critical and irreducible offspring distributions such that they belong to the domain of attraction of a stable law, where the stability indices may differ. We show that after a proper rescaling, their corresponding height process converges to the continuous-time height process associated with a strictly stable spectrally positive L\'evy process. This gives an analogue of ...
November 5, 2015
Under minimal condition, we prove the local convergence of a critical multi-type Galton-Watson tree conditioned on having a large total progeny by types towards a multi-type Kesten's tree. We obtain the result by generalizing Neveu's strong ratio limit theorem for aperiodic random walks on Z^d .
November 10, 2009
We study the evolution of a particle system whose genealogy is given by a supercritical continuous time Galton--Watson tree. The particles move independently according to a Markov process and when a branching event occurs, the offspring locations depend on the position of the mother and the number of offspring. We prove a law of large numbers for the empirical measure of individuals alive at time t. This relies on a probabilistic interpretation of its intensity by mean of an ...
March 1, 2017
Take a continuous-time Galton-Watson tree. If the system survives until a large time $T$, then choose $k$ particles uniformly from those alive. What does the ancestral tree drawn out by these $k$ particles look like? Some special cases are known but we give a more complete answer. We concentrate on near-critical cases where the mean number of offspring is $1+\mu/T$ for some $\mu\in\mathbb{R}$, and show that a scaling limit exists as $T\to\infty$. Viewed backwards in time, the...
April 12, 2018
Let $\mathcal{T}$ be a supercritical Galton-Watson tree with a bounded offspring distribution that has mean $\mu >1$, conditioned to survive. Let $\varphi_{\mathcal{T}}$ be a random embedding of $\mathcal{T}$ into $\mathbb{Z}^d$ according to a simple random walk step distribution. Let $\mathcal{T}_p$ be percolation on $\mathcal{T}$ with parameter $p$, and let $p_c = \mu^{-1}$ be the critical percolation parameter. We consider a random walk $(X_n)_{n \ge 1}$ on $\mathcal{T}_p$...
January 19, 2012
Consider the edge-deletion process in which the edges of some finite tree T are removed one after the other in the uniform random order. Roughly speaking, the cut-tree then describes the genealogy of connected components appearing in this edge-deletion process. Our main result shows that after a proper rescaling, the cut-tree of a critical Galton-Watson tree with finite variance and conditioned to have size n, converges as $n\to\infty$ to a Brownian continuum random tree (CRT...