November 19, 2006
Similar papers 4
November 11, 2012
In this paper, a new ridge-type shrinkage estimator for the precision matrix has been proposed. The asymptotic optimal shrinkage coefficients and the theoretical loss were derived. Data-driven estimators for the shrinkage coefficients were also conducted based on the asymptotic results deriving from random matrix theories. The new estimator which has a simple explicit formula is distribution-free and applicable to situation where the dimension of observation is greater than t...
May 19, 2024
We study principal components regression (PCR) in an asymptotic high-dimensional regression setting, where the number of data points is proportional to the dimension. We derive exact limiting formulas for the estimation and prediction risks, which depend in a complicated manner on the eigenvalues of the population covariance, the alignment between the population PCs and the true signal, and the number of selected PCs. A key challenge in the high-dimensional setting stems from...
August 12, 2017
This paper investigates the central limit theorem for linear spectral statistics of high dimensional sample covariance matrices of the form $\mathbf{B}_n=n^{-1}\sum_{j=1}^{n}\mathbf{Q}\mathbf{x}_j\mathbf{x}_j^{*}\mathbf{Q}^{*}$ where $\mathbf{Q}$ is a nonrandom matrix of dimension $p\times k$, and $\{\mathbf{x}_j\}$ is a sequence of independent $k$-dimensional random vector with independent entries, under the assumption that $p/n\to y>0$. A key novelty here is that the dimens...
June 20, 2017
In this paper, we consider an estimation problem concerning the matrix of correlation coefficients in context of high dimensional data settings. In particular, we revisit some results in Li and Rolsalsky [Li, D. and Rolsalsky, A. (2006). Some strong limit theorems for the largest entries of sample correlation matrices, The Annals of Applied Probability, 16, 1, 423-447]. Four of the main theorems of Li and Rolsalsky (2006) are established in their full generalities and we simp...
January 20, 2022
This paper studies the inference of the regression coefficient matrix under multivariate response linear regressions in the presence of hidden variables. A novel procedure for constructing confidence intervals of entries of the coefficient matrix is proposed. Our method first utilizes the multivariate nature of the responses by estimating and adjusting the hidden effect to construct an initial estimator of the coefficient matrix. By further deploying a low-dimensional project...
March 11, 2003
In this preface to the Journal of Physics A, Special Edition on Random Matrix Theory, we give a review of the main historical developments of random matrix theory. A short summary of the papers that appear in this special edition is also given.
March 15, 2012
In this work, we redefined two important statistics, the CLRT test (Bai et.al., Ann. Stat. 37 (2009) 3822-3840) and the LW test (Ledoit and Wolf, Ann. Stat. 30 (2002) 1081-1102) on identity tests for high dimensional data using random matrix theories. Compared with existing CLRT and LW tests, the new tests can accommodate data which has unknown means and non-Gaussian distributions. Simulations demonstrate that the new tests have good properties in terms of size and power. Wha...
August 12, 2018
Factor models are a class of powerful statistical models that have been widely used to deal with dependent measurements that arise frequently from various applications from genomics and neuroscience to economics and finance. As data are collected at an ever-growing scale, statistical machine learning faces some new challenges: high dimensionality, strong dependence among observed variables, heavy-tailed variables and heterogeneity. High-dimensional robust factor analysis serv...
October 28, 2016
In this paper we derive the optimal linear shrinkage estimator for the high-dimensional mean vector using random matrix theory. The results are obtained under the assumption that both the dimension $p$ and the sample size $n$ tend to infinity in such a way that $p/n \to c\in(0,\infty)$. Under weak conditions imposed on the underlying data generating mechanism, we find the asymptotic equivalents to the optimal shrinkage intensities and estimate them consistently. The proposed ...
November 24, 2023
In this paper, we introduce a class of improved estimators for the mean parameter matrix of a multivariate normal distribution with an unknown variance-covariance matrix. In particular, the main results of [D.Ch\'etelat and M. T. Wells(2012). Improved Multivariate Normal Mean Estimation with Unknown Covariance when $p$ is Greater than $n$. The Annals of Statistics, Vol. 40, No.6, 3137--3160] are established in their full generalities and we provide the corrected version of th...