December 3, 2006
Similar papers 5
December 15, 2006
In this paper we will give a rigorous proof of the lower bound for the scalar curvature of the standard solution of the Ricci flow conjectured by G. Perelman. We will prove that the scalar curvature $R$ of the standard solution satisfies $R(x,t)\ge C_0/(1-t)\quad\forall x\in\Bbb{R}^3,0\le t<1$, for some constant $C_0>0$.
May 8, 2023
Let $(M,g)$ be a complete, connected, non-compact Riemannian three-manifold with non-negative Ricci curvature satisfying $Ric\geq\varepsilon\,\operatorname{tr}(Ric)\,g$ for some $\varepsilon>0$. In this note, we give a new proof based on inverse mean curvature flow that $(M,g)$ is either flat or has non-Euclidean volume growth. In conjunction with results of J. Lott and of M.-C. Lee and P. Topping, this gives an alternative proof of a conjecture of R. Hamilton recently proven...
March 10, 2003
This is a technical paper, which is a continuation of math.DG/0211159. Here we construct Ricci flow with surgeries and verify most of the assertions, made in section 13 of that e-print; the exceptions are (1) the statement that manifolds that can collapse with local lower bound on sectional curvature are graph manifolds - this is deferred to a separate paper, since the proof has nothing to do with the Ricci flow, and (2) the claim on the lower bound for the volume of maximal ...
July 1, 2007
This is an expository article with complete proofs intended for a general non-specialist audience. The results are two-fold. First, we discuss a geometric invariant, that we call the width, of a manifold and show how it can be realized as the sum of areas of minimal 2-spheres. For instance, when $M$ is a homotopy 3-sphere, the width is loosely speaking the area of the smallest 2-sphere needed to ``pull over'' $M$. Second, we use this to conclude that Hamilton's Ricci flow bec...
October 12, 2023
In this note, we give a new proof for Perelman's scalar curvature and diameter estimates for the K\"ahler-Ricci flow on Fano manifolds. The proof relies on a new Harnack estimate for a special family of functions in space-time. Our new approach initiates the work in \cite{JST23a} for general finite time solutions of the K\"ahler-Ricci flow.
November 15, 2016
We present a new curvature condition which is preserved by the Ricci flow in higher dimensions. For initial metrics satisfying this condition, we establish a higher dimensional version of Hamilton's neck-like curvature pinching estimate. Using this estimate, we are able to prove a version of Perelman's Canonical Neighborhood Theorem in higher dimensions. This makes it possible to extend the flow beyond singularities by a surgery procedure in the spirit of Hamilton and Perelma...
February 20, 2015
We contribute to an original problem studied by Hamilton and others, in order to understand the behaviour of maximal solutions of the Ricci flow both in compact and non-compact complete orientable Riemannian manifolds of finite volume. The case of dimension two has peculiarities, which force us to use different ideas from the corresponding higher dimensional case. We show the existence of connected regions with a connected complementary set (the so-called "separating regions"...
June 14, 2012
We revisit the problem of uniqueness for the Ricci flow and give a short, direct proof, based on the consideration of a simple energy quantity, of Hamilton/Chen-Zhu's theorem on the uniqueness of complete solutions of uniformly bounded curvature. With a variation of this quantity and technique, we further prove a uniqueness theorem for subsolutions to a general class of mixed differential inequalities which implies an extension of Chen-Zhu's result to solutions (and initial d...
August 3, 2008
In this paper, we show that any ancient solution to the Ricci flow with the reduced volume whose asymptotic limit is sufficiently close to that of the Gaussian soliton is isometric to the Euclidean space for all time. This is a generalization of Anderson's result for Ricci-flat manifolds. As a corollary, a gap theorem for gradient shrinking Ricci solitons is also obtained.
August 10, 2003
In this note we prove some bounds for the extinction time for the Ricci flow on certain 3-manifolds. Our interest in this comes from a question of Grisha Perelman asked to the first author at a dinner in New York City on April 25th of 2003. His question was ``what happens to the Ricci flow on the 3-sphere when one starts with an arbitrary metric? In particular does the flow become extinct in finite time?'' He then went on to say that one of the difficulties in answering this ...