ID: math/0703818

Stability and exact multiplicity of periodic solutions of Duffing equations with cubic nonlinearities

March 27, 2007

View on ArXiv
Hongbin Chen, Yi Li
Mathematics
Classical Analysis and ODEs

We study the stability and exact multiplicity of periodic solutions of the Duffing equation with cubic nonlinearities. We obtain sharp bounds for h such that the equation has exactly three ordered T-periodic solutions. Moreover, when h is within these bounds, one of the three solutions is negative, while the other two are positive. The middle solution is asymptotically stable, and the remaining two are unstable.

Similar papers 1