October 14, 1995
We use the methods developed with M. Lyubich for proving complex bounds for real quadratics to extend E. De Faria's complex a priori bounds to all critical circle maps with an irrational rotation number. The contracting property for renormalizations of critical circle maps follows. In the Appendix we give an application of the complex bounds for proving local connectivity of some Julia sets.
Similar papers 1
May 5, 2020
In this paper we study homeomorphisms of the circle with several critical points and bounded type rotation number. We prove complex a priori bounds for these maps. As an application, we get that bi-cubic circle maps with same bounded type rotation number are $C^{1+\alpha}$ rigid.
September 3, 2019
We develop a renormalization theory for analytic homeomorphisms of the circle with two cubic critical points. We prove a renormalization hyperbolicity theorem. As a basis for the proofs, we develop complex a priori bounds for multi-critical circle maps.
November 15, 1996
In this paper we establish $C^2$ a-priori bounds for the scaling ratios of critical circle mappings in a form that gives also a compactness property for the renormalization operator.
April 1, 1995
We extend Sullivan's complex a priori bounds to real quadratic polynomials with essentially bounded combinatorics. Combined with the previous results of the first author, this yields complex bounds for all real quadratics. Local connectivity of the corresponding Julia sets follows.
November 15, 1997
We prove that any two real-analytic critical circle maps with cubic critical point and the same irrational rotation number of bounded type are $C^{1+\alpha}$ conjugate for some $\alpha>0$.
November 15, 1997
We prove that two $C^r$ critical circle maps with the same rotation number of bounded type are $C^{1+\alpha}$ conjugate for some $\alpha>0$ provided their successive renormalizations converge together at an exponential rate in the $C^0$ sense. The number $\alpha$ depends only on the rate of convergence. We also give examples of $C^\infty$ critical circle maps with the same rotation number that are not $C^{1+\beta}$ conjugate for any $\beta>0$.
February 7, 2022
A general ansatz in Renormalization Theory, already established in many important situations, states that exponential convergence of renormalization orbits implies that topological conjugacies are actually smooth (when restricted to the attractors of the original systems). In this paper we establish this principle for a large class of bicritical circle maps, which are $C^3$ circle homeomorphisms with irrational rotation number and exactly two (non-flat) critical points. The p...
January 25, 2005
It is shown that if $f$ and $g$ are any two analytic critical circle mappings with the same irrational rotation number, then the conjugacy that maps the critical point of $f$ to that of $g$ has regularity $C^{1+\alpha}$ at the critical point, with a universal value of $\alpha>0$. As a consequence, a new proof of the hyperbolicity of the full renormalization horseshoe of critical circle maps is given.
September 1, 2006
A decoration of the Mandelbrot set $M$ is a part of $M$ cut off by two external rays landing at some tip of a satellite copy of $M$ attached to the main cardioid. In this paper we consider infinitely renormalizable quadratic polynomials satisfying the decoration condition, which means that the combinatorics of the renormalization operators involved is selected from a finite family of decorations. For this class of maps we prove {\it a priori} bounds. They imply local connecti...
September 23, 2016
In this paper we generalize renormalization theory for analytic critical circle maps with a cubic critical point to the case of maps with an arbitrary odd critical exponent by proving a quasiconformal rigidity statement for renormalizations of such maps.