April 29, 2016
In this paper, we study the coarse Lipschitz geometry of Banach spaces with several asymptotic properties. Specifically, we look at asymptotically uniformly smoothness and convexity, and several distinct Banach-Saks-like properties. Among other results, we characterize the Banach spaces which are either coarsely or uniformly homeomorphic to $T^{p_1}\oplus \ldots \oplus T^{p_n}$, where each $T^{p_j}$ denotes the $p_j$-convexification of the Tsirelson space, for $p_1,\ldots,p_n...
June 25, 2021
In the present paper we introduce and study the Lipschitz retractional structure of metric spaces. This topic was motivated by the analogous projectional structure of Banach spaces, a topic that has been thoroughly investigated. The more general metric setting fits well with the currently active theory of Lipschitz free spaces and spaces of Lipschitz functions. Among our applications we show that the Lipschitz free space $\mathcal{F}(X)$ is a Plichko space whenever $X$ is a P...
February 17, 2020
The classical Hahn-Banach theorem is based on a successive point-by-point procedure of extending bounded linear functionals. In the setting of a general metric domain, the conditions are less restrictive and the extension is only required to be Lipschitz with the same Lipschitz constant. In this case, the successive procedure can be replaced by a much simpler one which was done by McShane and Whitney in the 1930s. Using virtually the same construction, Czipszer and Geh\'er sh...
April 15, 2016
The aim of this note is study the topology generated by Lipschitz slices in the unit sphere of a Banach space. We prove that the above topology agrees with the weak topology in the unit sphere and, as a consequence, we obtain Lipschitz characterizations of classical linear topics in Banach spaces, as Radon-Nikodym property, convex point of continuity property and strong regularity, which shows that the above classical linear properties only depend on the natural uniformity in...
July 20, 2016
In this paper, we study nonlinear embeddings between Banach spaces. More specifically, the goal of this paper is to study weaker versions of coarse and uniform embeddability, and to provide suggestive evidences that those weaker embeddings may be stronger than one would think. We do such by proving that many known results for coarse and uniform embeddings remain valid for those weaker notions of embeddings.
December 5, 2016
We study the structure of the space of coarse Lipschitz maps between Banach spaces. In particular we introduce the notion of norm attaining coarse Lipschitz maps. We extend to the case of norm attaining coarse Lipschitz equivalences, a result of G. Godefroy on Lipschitz equivalences. This leads us to include the non separable versions of classical results on the stability of the existence of asymptotically uniformly smooth norms under Lipschitz or coarse Lipschitz equivalence...
September 26, 2018
We develop tools for proving isomorphisms of normed spaces of Lipschitz functions over various doubling metric spaces and Banach spaces. In particular, we show that $\operatorname{Lip}_0(\mathbb{Z}^d)\simeq\operatorname{Lip}_0(\mathbb{R}^d)$, for all $d\in\mathbb{N}$. More generally, we e.g. show that $\operatorname{Lip}_0(\Gamma)\simeq \operatorname{Lip}_0(G)$, where $\Gamma$ is from a large class of finitely generated nilpotent groups and $G$ is its Mal'cev closure; or that...
June 15, 2018
We treat the general theory of nonlinear ideals and extend as many notions as possible from the linear theory to the nonlinear theory. We define nonlinear ideals with special properties which associate new non-linear ideals to given ones and establish several properties and characterizations of them. Building upon the results of U. Matter we define a Lipschitz interpolative nonlinear ideal procedure between metric spaces and Banach spaces and establish this class of Lipschitz...
August 5, 2015
Given a Banach space X and a subspace Y, the pair (X,Y) is said to have the approximation property (AP) provided there is a net of finite rank bounded linear operators on X all of which leave the subspace Y invariant such that the net converges uniformly on compact subsets of X to the identity operator. The main result is an easy to apply dual formulation of this property. Applications are given to three space properties; in particular, if X has the approximation property and...
August 9, 2018
These notes concern the nonlinear geometry of Banach spaces, asymptotic uniform smoothness and several Banach-Saks-like properties. We study the existence of certain concentration inequalities in asymptotically uniformly smooth Banach spaces as well as weakly sequentially continuous coarse (Lipschitz) embeddings into those spaces. Some results concerning the descriptive set theoretical complexity of those properties are also obtained. We finish the paper with a list of open p...