April 23, 1998
Castelnuovo-Mumford regularity is an important invariant of projective algebraic varieties. A well known conjecture due to Eisenbud and Goto gives a bound for regularity in terms of the codimension and degree,i.e., Castelnuovo-Mumford regularity of a given variety X is less than or equal to deg(X)-codimension(X)+1. Generic projection methods proved to be effective for the study of regularity of smooth projevtive varieties of dimension at most four(cf.[BM},[K2],[L],[Pi] and [R1]) because there are nice vanishing theorems for cohomology of vector bundles (e.g. the Kodaira-Kawamata-Viehweg vanishing theorem) and detailed information about the fibers ofgeneric projections from X to a hypersurface of the same dimension. Here we show by using methods similar to those used in [K2] that $\reg{X}\le(deg(X)-codimension(X)+1)+10$ for any smooth fivefold and $\reg{X}\le(deg(X)-codimension(X)+1)+20$ for any smooth sixfold. Furthermore, using similar methods we give a bound for the regularity of an arbitrary (not necessarily locally Cohen-Macaulay) projective surface X in P^N. To wit, we show that $\reg{X}\le(d-e+1)d-(2e+1)$, where d=deg(X) and e=codimension(X). This is the first bound for surfaces which does not depend on smoothness.
Similar papers 1
February 3, 1998
Castelnuovo-Mumford regularity is an important invariant of projective algebraic varieties. A well known conjecture due to Eisenbud and Goto gives a bound for regularity in terms of the codimension and degree. This conjecture is known to be true for curves (Gruson-Lazarsfeld-Peskine) and smooth surfaces (Pinkham, Lazarsfeld), but not in general. The purpose of this paper is to give new bounds for the regularity of smooth varieties in dimensions 3 and 4 that are only slightl...
June 13, 2022
McCullough and Peeva found counterexamples to the Eisenbud-Goto conjecture on the Castelnuovo-Mumford regularity by using Rees-like algebras. In this paper, we suggest another method to construct counterexamples to the conjecture and show that for nondegenerate projective varieties of a fixed dimension $n\geq 3$ and a fixed codimension $e\geq2$, the regularity can not be bounded above by any polynomial function of the degree whose order is about half of the dimension $n$. Our...
March 9, 2022
The purpose of this paper is to establish a Castelnuovo-Mumford regularity bound for threefolds with mild singularities. Let $X$ be a non-degenerate normal projective threefold in $\mathbb{P}^r$ of degree $d$ and codimension $e$. We prove that if $X$ has rational singularities, then $\text{reg}(X) \leq d-e+2$. Our bound is very close to a sharp bound conjectured by Eisenbud-Goto. When $e=2$ and $X$ has Cohen-Macaulay Du Bois singularities, we obtain the conjectured bound $\te...
June 28, 2014
Let $X \subseteq \mathbb{P}^r$ be a non-degenerate smooth projective variety of dimension $n$, codimension $e$, and degree $d$ defined over an algebraically closed field of characteristic zero. In this paper, we first show that $\text{reg} (\mathcal{O}_X) \leq d-e$, and classify the extremal and the next to extremal cases. Our result reduces the Eisenbud-Goto regularity conjecture for the smooth case to the problem finding a Castelnuovo-type bound for normality. It is worth n...
March 10, 2020
We derive new bounds for the Castelnuovo-Mumford regularity of the ideal sheaf of a complex projective manifold of any dimension. They depend linearly on the coefficients of the Hilbert polynomial, and are optimal for rational scrolls, but most likely not for other varieties. Our proof is based on an observation of Lazarsfeld in his approach for surfaces and does not require the (full) projection step. We obtain a bound for each partial linear projection of the given variety,...
November 2, 2000
The Castelnuovo-Mumford regularity r of a complex, projective variety V is an upper bound for the degrees of the hypersurfaces necessary to cut out V. In this note we give a bound for r when V is left invariant by a vector field on the ambient projective space. More precisely, assume V is arithmetically Cohen-Macaulay, for instance, a complete intersection. Assume as well that V projects to a normal-crossings hypersurface, which is the case when V is a curve with at most ordi...
May 10, 2013
We study projective surfaces $X \subset \mathbb{P}^r$ (with $r \geq 5$) of maximal sectional regularity and degree $d > r$, hence surfaces for which the Castelnuovo-Mumford regularity $\reg(C)$ of a general hyperplane section curve $C = X \cap \mathbb{P}^{r-1}$ takes the maximally possible value $d-r+3$. We show that each of these surfaces is either a cone over a curve $C \subset \mathbb{P}^{r-1}$ of maximal regularity or else a birational outer linear projection of a smooth ...
February 4, 1998
Castelnuovo-Mumford regularity is an important invariant of projective algebraic varieties. A well known conjecture due to Eisenbud and Goto gives a bound for regularity in terms of the codimension and degree,i.e., Castelnuovo-Mumford regularity of a given variety $X$ is less than or equal to $deg(X)-codim(X)+1$. This regularity conjecture (including classification of examples on the boundary) was verified for integral curves (Castelnuovo, Gruson, Lazarsfeld and Peskine), and...
October 29, 1997
A long standing conjecture, known to us as the Eisenbud Goto conjecture, states that an n-dimensional variety embedded with degree $d$ in the $N$- dimensional projective space is $(d-(N-n)+1)$-regular in the sense of Castelnuovo-Mumford. In this work the conjecture is proved for all smooth varieties $X$ embedded by the complete linear system associated with a very ample line bundle $L$ such that $\Delta (X,L) \le 5$ where $\Delta (X,L) = \dim{X} + \deg{X} -h^0(L).$ As a by-...
March 8, 2016
Let $X \subseteq \mathbb{P}^r$ be a scroll of codimension $e$ and degree $d$ over a smooth projective curve of genus $g$. The purpose of this paper is to prove a linear Castelnuovo-Mumford regularity bound that reg$(X) \leq d-e+1+g(e-1)$. This bound works over an algebraically closed field of arbitrary characteristic.