August 4, 1998
Similar papers 3
October 15, 2015
We generalize a special case of a theorem of Proctor on the enumeration of lozenge tilings of a hexagon with a maximal staircase removed, using Kuo's graphical condensation method. Additionally, we prove a formula for a weighted version of the given region. The result also extends work of Ciucu and Fischer. By applying the factorization theorem of Ciucu, we are also able to generalize a special case of MacMahon's boxed plane partition formula.
December 1, 1997
Propp conjectured that the number of lozenge tilings of a semiregular hexagon of sides $2n-1$, $2n-1$ and $2n$ which contain the central unit rhombus is precisely one third of the total number of lozenge tilings. Motivated by this, we consider the more general situation of a semiregular hexagon of sides $a$, $a$ and $b$. We prove explicit formulas for the number of lozenge tilings of these hexagons containing the central unit rhombus, and obtain Propp's conjecture as a coroll...
October 29, 2014
It has been proven that the lozenge tilings of a quartered hexagon on the triangular lattice are enumerated by a simple product formula. In this paper we give a new proof for the tiling formula by using Kuo's graphical condensation. Our result generalizes a Proctor's theorem on enumeration of plane partitions contained in a "maximal staircase".
June 6, 2013
A rhombus tiling of a hexagon is said to be centered if it contains the central lozenge. We compute the number of vertically symmetric rhombus tilings of a hexagon with side lengths $a, b, a, a, b, a$ which are centered. When $a$ is odd and $b$ is even, this shows that the probability that a random vertically symmetric rhombus tiling of a $a, b, a, a, b, a$ hexagon is centered is exactly the same as the probability that a random rhombus tiling of a $a, b, a, a, b, a$ hexagon ...
August 3, 2020
The enumeration of lozenge tilings of hexagons with holes has received much attention during the last three decades. One notable feature is that a lot of the recent development involved Kuo's graphical condensation. Motivated by Ciucu, Lai and Rohatgi's work on tilings of hexagons with a removed triad of bowties, in this paper, we show that the ratio of numbers of lozenge tilings of two more general regions is expressed as a simple product formula. Our proof does not involve ...
July 4, 2007
We generalize the generating formula for plane partitions known as MacMahon's formula as well as its analog for strict plane partitions. We give a 2-parameter generalization of these formulas related to Macdonald's symmetric functions. The formula is especially simple in the Hall-Littlewood case. We also give a bijective proof of the analog of MacMahon's formula for strict plane partitions.
February 22, 2016
The combinatorics of tilings of a hexagon of integer side-length $n$ by 120 degree - 60 degree diamonds of side-length 1 has a long history, both directly (as a problem of interest in thermodynamic models) and indirectly (through the equivalence to plane partitions). Formulae as products of factorials have been conjectured and, one by one, proven for the number of such tilings under each of the symmetries of the hexagon. However, when this note was written the entry for the n...
July 10, 2020
We give a product formula for the number of shifted plane partitions of shifted double staircase shape with bounded entries. This is the first new example of a family of shapes with a plane partition product formula in many years. The proof is based on the theory of lozenge tilings; specifically, we apply the "free boundary" Kuo condensation due to Ciucu.
September 9, 2019
In this paper we consider arbitrary hexagons on the triangular lattice with three arbitrary bowtie-shaped holes, whose centers form an equilateral triangle. The number of lozenge tilings of such general regions is not expected --- and indeed is not --- given by a simple product formula. However, when considering a certain natural normalized counterpart of any such region, we prove that the ratio between the number of tilings of the original and the number of tilings of the no...
December 1, 1997
Major Percy A. MacMahon's first paper on plane partitions included a conjectured generating function for symmetric plane partitions. This conjecture was proven almost simultaneously by George Andrews and Ian Macdonald, Andrews using the machinery of basic hypergeometric series and Macdonald employing his knowledge of symmetric functions. The purpose of this paper is to simplify Macdonald's proof by providing a direct, inductive proof of his formula which expresses the sum of ...