October 9, 2013
Consider a system of two polynomial equations in two variables: $$F(X,Y)=G(X,Y)=0$$ where $F \in \rr[X,Y]$ has degree $d \geq 1$ and $G \in \rr[X,Y]$ has $t$ monomials. We show that the system has only $O(d^3t+d^2t^3)$ real solutions when it has a finite number of real solutions. This is the first polynomial bound for this problem. In particular, the bounds coming from the theory of fewnomials are exponential in $t$, and count only nondegenerate solutions. More generally, we ...
May 24, 2011
Lazard and Rouillier in [9], by introducing the concept of discriminant variety, have described a new and efficient algorithm for solving parametric polynomial systems. In this paper we modify this algorithm, and we show that with our improvements the output of our algorithm is always minimal and it does not need to compute the radical of ideals.
May 21, 2021
Let $V$ be the set of real common solutions to $F = (f_1, \ldots, f_s)$ in $\mathbb{R}[x_1, \ldots, x_n]$ and $D$ be the maximum total degree of the $f_i$'s. We design an algorithm which on input $F$ computes the dimension of $V$. Letting $L$ be the evaluation complexity of $F$ and $s=1$, it runs using $O^\sim \big (L D^{n(d+3)+1}\big )$ arithmetic operations in $\mathbb{Q}$ and at most $D^{n(d+1)}$ isolations of real roots of polynomials of degree at most $D^n$. Our algorith...
September 6, 1996
We present a new method for solving symbolically zero--dimensional polynomial equation systems in the affine and toric case. The main feature of our method is the use of problem adapted data structures: arithmetic networks and straight--line programs. For sequential time complexity measured by network size we obtain the following result: it is possible to solve any affine or toric zero--dimensional equation system in non--uniform sequential time which is polynomial in the len...
October 25, 2005
We study the problem of counting the total number of affine solutions of a system of n binomials in n variables over an algebraically closed field of characteristic zero. We show that we may decide in polynomial time if that number is finite. We give a combinatorial formula for computing the total number of affine solutions (with or without multiplicity) from which we deduce that this counting problem is #P-complete. We discuss special cases in which this formula may be compu...
September 7, 2023
A multivariate cryptograpic instance in practice is a multivariate polynomial system. So the security of a protocol rely on the complexity of solving a multivariate polynomial system. In this paper there is an overview on a general algorithm used to solve a multivariate system and the quantity to which the complexity of this algorithm depends on: the solving degree. Unfortunately, it is hard to compute. For this reason, it is introduced an invariant: the degree of regularity....
October 1, 1997
We present bounds for the sparseness and for the degrees of the polynomials in the Nullstellensatz. Our bounds depend mainly on the unmixed volume of the input polynomial system. The degree bounds can substantially improve the known ones when this polynomial system is sparse, and they are, in the worst case, simply exponential in terms of the number of variables and the maximum degree of the input polynomials.
December 15, 2017
We propose a symbolic-numeric algorithm to count the number of solutions of a polynomial system within a local region. More specifically, given a zero-dimensional system $f_1=\cdots=f_n=0$, with $f_i\in\mathbb{C}[x_1,\ldots,x_n]$, and a polydisc $\mathbf{\Delta}\subset\mathbb{C}^n$, our method aims to certify the existence of $k$ solutions (counted with multiplicity) within the polydisc. In case of success, it yields the correct result under guarantee. Otherwise, no informa...
May 3, 2000
We give a new complexity bound for calculating the complex dimension of an algebraic set. Our algorithm is completely deterministic and approaches the best recent randomized complexity bounds. We also present some new, significantly sharper quantitative estimates on rational univariate representations of roots of polynomial systems. As a corollary of the latter bounds, we considerably improve a recent algorithm of Koiran for deciding the emptiness of a hypersurface intersecti...
June 6, 2022
We develop a new method that improves the efficiency of equation-by-equation algorithms for solving polynomial systems. Our method is based on a novel geometric construction, and reduces the total number of homotopy paths that must be numerically continued. These improvements may be applied to the basic algorithms of numerical algebraic geometry in the settings of both projective and multiprojective varieties. Our computational experiments demonstrate significant savings obta...