April 29, 1999
We discuss a method of the asymptotic computation of moments of the normalized eigenvalue counting measure of random matrices of large order. The method is based on the resolvent identity and on some formulas relating expectations of certain matrix functions and the expectations including their derivatives or, equivalently, on some simple formulas of the perturbation theory. In the framework of this unique approach we obtain functional equations for the Stieltjes transforms of the limiting normalized eigenvalue counting measure and the bounds for the rate of convergence for the majority known random matrix ensembles.
Similar papers 1
June 24, 1996
We study the normalized trace $g_n(z)=n^{-1} \mbox{tr} \, (H-zI)^{-1}$ of the resolvent of $n\times n$ real symmetric matrices $H=\big[(1+\delta_{jk})W_{jk}/\sqrt n\big]_{j,k=1}^n$ assuming that their entries are independent but not necessarily identically distributed random variables. We develop a rigorous method of asymptotic analysis of moments of $g_n(z)$ for $|\Im z| \ge \eta_0$ where $\eta_0$ is determined by the second moment of $W_{jk}$. By using this method we find t...
January 17, 2016
For a large class of symmetric random matrices with correlated entries, selected from stationary random fields of centered and square integrable variables, we show that the limiting distribution of eigenvalue counting measure always exists and we describe it via an equation satisfied by its Stieltjes transform. No rate of convergence to zero of correlations is imposed, therefore the process is allowed to have long memory. In particular, if the symmetrized matrices are constru...
June 13, 2014
Several applications of the moment method in random matrix theory, especially, to local eigenvalue statistics at the spectral edges, are surveyed, with emphasis on a modification of the method involving orthogonal polynomials.
December 20, 2016
This is an elementary review, aimed at non-specialists, of results that have been obtained for the limiting distribution of eigenvalues and for the operator norms of real symmetric random matrices via the method of moments. This method goes back to a remarkable argument of Eugen Wigner some sixty years ago which works best for independent matrix entries, as far as symmetry permits, that are all centered and have the same variance. We then discuss variations of this classical ...
January 8, 2021
This is a brief survey of classical and recent results about the typical behavior of eigenvalues of large random matrices, written for mathematicians and others who study and use matrices but may not be accustomed to thinking about randomness.
May 20, 1999
We describe the resolvent approach for the rigorous study of the mescoscopic regime of Hermitian matrix spectra. We present results reflecting the universal behavior of the smoothed density of eigenvalue distribution of large random matrices
April 19, 2017
This paper studies the behaviour of the empirical eigenvalue distribution of large random matrices W_N W_N* where W_N is a ML x N matrix, whose M block lines of dimensions L x N are mutually independent Hankel matrices constructed from complex Gaussian correlated stationary random sequences. In the asymptotic regime where M \rightarrow \infty, N \rightarrow +\infty and ML/N \rightarrow c > 0, it is shown using the Stieltjes transform approach that the empirical eigenvalue dis...
November 22, 2004
We compute the limiting eigenvalue statistics at the edge of the spectrum of large Hermitian random matrices perturbed by the addition of small rank deterministic matrices. To be more precise, we consider random Hermitian matrices with independent Gaussian entries $M_{ij}, i\leq j$ with various expectations. We prove that the largest eigenvalue of such random matrices exhibits, in the large $N$ limit, various limiting distributions depending on both the eigenvalues of the mat...
August 8, 2014
We investigate the universality of singular value and eigenvalue distributions of matrix valued functions of independent random matrices and apply these general results in several examples. In particular we determine the limit distribution and prove universality under general conditions for singular value and eigenvalue distributions of products of independent matrices from spherical ensembles.
June 4, 2014
In this paper we show that the empirical eigenvalue distribution of any sample covariance matrix generated by independent copies of a stationary regular sequence has a limiting distribution depending only on the spectral density of the sequence. We characterize this limit in terms of Stieltjes transform via a certain simple equation. No rate of convergence to zero of the covariances is imposed. If the entries of the stationary sequence are functions of independent random vari...