February 14, 2007
The theme of this survey is that subgroups of the mapping class group of a finite type surface S can be studied via the geometric/dynamical properties of their action on the Thurston compactification of the Teichmuller space of S, just as discrete subgroups of the isometries of hyperbolic space can be studied via their action on compactified hyperbolic space.
October 5, 2014
The present paper are the notes of a mini-course addressed mainly to non-experts. It purpose it to provide a first approach to the theory of mapping class groups of non-orientable surfaces.
February 14, 2023
Based on the action of the mapping class group on the space of measured foliations, we construct a new boundary of the mapping class group and study the structure of this boundary. As an application, for any point in Teichmuller space, we consider the orbit of this point under the action of the mapping class group and describe the closure of this orbit in the Thurston compactification and the Gardiner-Masur compactification of Teichmuller space. We also construct some new poi...
September 2, 2004
Let S be a compact, connected, orientable surface of positive genus. Let HT(S) be the Hatcher-Thurston complex of S. We prove that Aut(HT(S)) is isomorphic to the extended mapping class group of S modulo its center.
March 5, 2020
We give a short and elementary proof of the non-realizability of the mapping class group via homeomorphisms. This was originally established by Markovic, resolving a conjecture of Thurston. With the tools established in this paper, we also obtain some rigidity results for actions of the mapping class group on Euclidean spaces.
February 17, 2009
We study the action of the mapping class group on the real homology of finite covers of a topological surface. We use the homological representation of the mapping class to construct a faithful infinite-dimensional representation of the mapping class group. We show that this representation detects the Nielsen-Thurston classification of each mapping class. We then discuss some examples that occur in the theory of braid groups and develop an analogous theory for automorphisms o...
February 6, 2023
The aim of this paper is to survey some aspects of mapping class groups with focus on their finite dimensional representations arising in topological quantum field theory.
October 6, 2021
Let $S$ be a connected non-orientable surface with negative Euler characteristic and of finite type. We describe the possible closures in $\mathcal M\mathcal L$ and $\mathcal P\mathcal M\mathcal L$ of the mapping class group orbits of measured laminations, projective measured laminations and points in Teichm\"uller space. In particular we obtain a characterization of the closure in $\mathcal M\mathcal L$ of the set of weighted two-sided curves.
July 9, 2003
In this survey paper, we give a complete list of known results on the first and the second homology groups of surface mapping class groups. Some known results on higher (co)homology are also mentioned.
September 27, 2019
We show that the algebraic automorphism group of the SL(2,C) character variety of a closed orientable surface with negative Euler characteristic is a finite extension of its mapping class group. Along the way, we provide a simple characterization of the valuations on the character algebra coming from measured laminations.