ID: math/9906016

On periodic sequences for algebraic numbers

June 2, 1999

View on ArXiv
Thomas Garrity
Mathematics
Number Theory

For each positive integer n greater than or equal to 2, a new approach to expressing real numbers as sequences of nonnegative integers is given. The n=2 case is equivalent to the standard continued fraction algorithm. For n=3, it reduces to a new iteration of the triangle. Cubic irrationals that are roots of x^3 + k x^2 + x - 1 are shown to be precisely those numbers with purely periodic expansions of period length one. For general positive integers n, it reduces to a new iteration of an n dimensional simplex.

Similar papers 1