February 13, 2002
Similar papers 5
June 20, 2023
This article is in the spirit of our work on the consequences of the Regge calculus, where some edge length scale arises as an optimal initial point of the perturbative expansion after functional integration over connection. Now consider the perturbative expansion itself. To obtain an algorithmizable diagram technique, we consider the simplest periodic simplicial structure with a frozen part of the variables ("hypercubic"). After functional integration over connection, the ...
July 6, 2016
We prove an asymptotic formula for the determinant of the bundle Laplacian on discrete $d$-dimensional tori as the number of vertices tends to infinity. This determinant has a combinatorial interpretation in terms of cycle-rooted spanning forests. We also establish a relation (in the limit) between the spectral zeta function of a line bundle over a discrete torus, the spectral zeta function of the infinite graph $\mathbb{Z}^d$ and the Epstein-Hurwitz zeta function. The latter...
September 10, 2019
We prove that the Fermi surface of a connected doubly periodic self-adjoint discrete graph operator is irreducible at all but finitely many energies provided that the graph (1) can be drawn in the plane without crossing edges (2) has positive coupling coefficients (3) has two vertices per period. If "positive" is relaxed to "complex", the only cases of reducible Fermi surface occur for the graph of the tetrakis square tiling, and these can be explicitly parameterized when the...
July 23, 2014
The dimer model is an exactly solvable model of planar statistical mechanics. In its critical phase, various aspects of its scaling limit are known to be described by the Gaussian free field. For periodic graphs, criticality is an algebraic condition on the spectral curve of the model, determined by the edge weights; isoradial graphs provide another class of critical dimer models, in which the edge weights are determined by the local geometry. In the present article, we consi...
October 13, 2008
We study discrete complex analysis and potential theory on a large family of planar graphs, the so-called isoradial ones. Along with discrete analogues of several classical results, we prove uniform convergence of discrete harmonic measures, Green's functions and Poisson kernels to their continuous counterparts. Among other applications, the results can be used to establish universality of the critical Ising and other lattice models.
April 3, 2015
We introduce a one-parameter family of massive Laplacian operators $(\Delta^{m(k)})_{k\in[0,1)}$ defined on isoradial graphs, involving elliptic functions. We prove an explicit formula for the inverse of $\Delta^{m(k)}$, the massive Green function, which has the remarkable property of only depending on the local geometry of the graph, and compute its asymptotics. We study the corresponding statistical mechanics model of random rooted spanning forests. We prove an explicit loc...
February 15, 2015
We present a short proof of the Kac-Ward formula for the partition function of the Ising model on planar graphs.
February 9, 2021
For $\Pi \subset \mathbb{R}^2$ a connected, open, bounded set whose boundary is a finite union of disjoint polygons whose vertices have integer coordinates, the logarithm of the discrete Laplacian on $L\Pi \cap \mathbb{Z}^2$ with Dirichlet boundary conditions has an asymptotic expansion for large $L$ involving the zeta-regularized determinant of the associated continuum Laplacian. When $\Pi$ is not simply connected, this result extends to Laplacians acting on two-valued fun...
May 16, 2007
The complexity of a graph can be obtained as a derivative of a variation of the zeta function or a partial derivative of its generalized characteristic polynomial evaluated at a point [\textit{J. Combin. Theory Ser. B}, 74 (1998), pp. 408--410]. A similar result for the weighted complexity of weighted graphs was found using a determinant function [\textit{J. Combin. Theory Ser. B}, 89 (2003), pp. 17--26]. In this paper, we consider the determinant function of two variables an...
September 17, 2009
This is a short (and somewhat informal) contribution to the proceedings of the XVIth International Congress on Mathematical Physics, Prague, 2009, written up by the second author. We describe how the recent proof of the existence and conformal covariance of the scaling limits of dynamical and near-critical planar percolation implies the existence and several topological properties of the scaling limit of the Minimal Spanning Tree, and that it is invariant under scalings, rota...