November 14, 2014
This paper provides a collection of mathematical and computational tools for the study of robustness in nonlinear gene regulatory networks, represented by time- and state-discrete dynamical systems taking on multiple states. The focus is on networks governed by nested canalizing functions (NCFs), first introduced in the Boolean context by S. Kauffman. After giving a general definition of NCFs we analyze the class of such functions. We derive a formula for the normalized avera...
February 15, 2024
Biological networks such as gene regulatory networks possess desirable properties. They are more robust and controllable than random networks. This motivates the search for structural and dynamical features that evolution has incorporated in biological networks. A recent meta-analysis of published, expert-curated Boolean biological network models has revealed several such features, often referred to as design principles. Among others, the biological networks are enriched for ...
June 14, 2011
Canalization is a classic concept in Developmental Biology that is thought to be an important feature of evolving systems. In a Boolean network it is a form of network robustness in which a subset of the input signals control the behavior of a node regardless of the remaining input. It has been shown that Boolean networks can become canalized if they evolve through a frustrated competition between nodes. This was demonstrated for large networks in which each node had K=3 inpu...
June 22, 2019
Developing efficient computational methods to assess the impact of external interventions on the dynamics of a network model is an important problem in systems biology. This paper focuses on quantifying the global changes that result from the application of an intervention to produce a desired effect, which we define as the total effect of the intervention. The type of mathematical models that we will consider are discrete dynamical systems which include the widely used Boole...
May 9, 2014
Boolean networks are used to model biological networks such as gene regulatory networks. Often Boolean networks show very chaotic behaviour which is sensitive to any small perturbations. In order to reduce the chaotic behaviour and to attain stability in the gene regulatory network, nested Canalizing Functions (NCFs) are best suited. NCFs and its variants have a wide range of applications in systems biology. Previously, many works were done on the application of canalizing fu...
November 11, 2011
We introduce the nested canalyzing depth of a function, which measures the extent to which it retains a nested canalyzing structure. We characterize the structure of functions with a given depth and compute the expected activities and sensitivities of the variables. This analysis quantifies how canalyzation leads to higher stability in Boolean networks. It generalizes the notion of nested canalyzing functions (NCFs), which are precisely the functions with maximum depth. NCFs ...
July 20, 2010
We obtain the phase diagram of random Boolean networks with nested canalizing functions. Using the annealed approximation, we obtain the evolution of the number $b_t$ of nodes with value one, and the network sensitivity $\lambda$, and we compare with numerical simulations of quenched networks. We find that, contrary to what was reported by Kauffman et al. [Proc. Natl. Acad. Sci. 2004 101 49 17102-7], these networks have a rich phase diagram, were both the "chaotic" and frozen...
September 12, 2014
Boolean networks are used to model biological networks such as gene regulatory networks. Often Boolean networks show very chaotic behavior which is sensitive to any small perturbations.In order to reduce the chaotic behavior and to attain stability in the gene regulatory network,nested canalizing functions(NCF)are best suited NCF and its variants have a wide range of applications in system biology. Previously many work were done on the application of canalizing functions but ...
October 28, 2011
In this paper, we extend the definition of Boolean canalyzing functions to the canalyzing functions over finite field $\mathbb{F}_{q}$, where $q$ is a power of a prime. We obtain the characterization of all the eight classes of such functions as well as their cardinality. When $q=2$, we obtain a combinatorial identity by equating our result to the formula in \cite{Win}. Finally, for a better understanding to the magnitude, we obtain the asymptotes for all the eight cardinalit...
June 12, 2006
This paper focuses on the study of certain classes of Boolean functions that have appeared in several different contexts. Nested canalyzing functions have been studied recently in the context of Boolean network models of gene regulatory networks. In the same context, polynomial functions over finite fields have been used to develop network inference methods for gene regulatory networks. Finally, unate cascade functions have been studied in the design of logic circuits and bin...