April 6, 2005
Similar papers 2
February 17, 2011
We prove that the growth constants for nearest-neighbour lattice trees and lattice (bond) animals on the integer lattice Zd are asymptotic to 2de as the dimension goes to infinity, and that their critical one-point functions converge to e. Similar results are obtained in dimensions d>8 in the limit of increasingly spread-out models; in this case the result for the growth constant is a special case of previous results of M. Penrose. The proof is elementary, once we apply p...
February 3, 2004
We examine the percolation model on $\mathbb{Z}^d$ by an approach involving lattice animals and their surface-area-to-volume ratio. For $\beta \in [0,2(d-1))$, let $f(\beta)$ be the asymptotic exponential rate in the number of edges of the number of lattice animals containing the origin which have surface-area-to-volume ratio $\beta$. The function $f$ is bounded above by a function which may be written in an explicit form. For low values of $\beta$ ($\beta \leq 1/p_c - 1$), e...
December 5, 2000
The lace expansion is a powerful tool for analysing the critical behaviour of self-avoiding walks and percolation. It gives rise to a recursion relation which we abstract and study using an adaptation of the inductive method introduced by den Hollander and the authors. We give conditions under which the solution to the recursion relation behaves as a Gaussian, both in Fourier space and in terms of a local central limit theorem. These conditions are shown elsewhere to hold for...
February 4, 2010
We consider random walk and self-avoiding walk whose 1-step distribution is given by $D$, and oriented percolation whose bond-occupation probability is proportional to $D$. Suppose that $D(x)$ decays as $|x|^{-d-\alpha}$ with $\alpha>0$. For random walk in any dimension $d$ and for self-avoiding walk and critical/subcritical oriented percolation above the common upper-critical dimension $d_{\mathrm{c}}\equiv2(\alpha\wedge2)$, we prove large-$t$ asymptotics of the gyration rad...
December 15, 2017
The aim of this survey is to explain, in a self-contained and relatively beginner-friendly manner, the lace expansion for the nearest-neighbor models of self-avoiding walk and percolation that converges in all dimensions above 6 and 9, respectively. To achieve this, we consider a $d$-dimensional version of the body-centered cubic (BCC) lattice, on which it is extremely easy to enumerate various random-walk quantities. Also, we choose a particular set of bootstrapping function...
August 3, 2020
We study the two-point functions of a general class of random-length random walks on finite boxes in $\ZZ^d$ with $d\ge3$, and provide precise asymptotics for their behaviour. We show that the finite-box two-point function is asymptotic to the infinite-lattice two-point function when the typical walk length is $o(L^2)$, but develops a plateau when the typical walk length is $\Omega(L^2)$. We also numerically study walk length moments and limiting distributions of the self-avo...
December 20, 2017
This article is concerned with self-avoiding walks (SAW) on $\mathbb{Z}^{d}$ that are subject to a self-attraction. The attraction, which rewards instances of adjacent parallel edges, introduces difficulties that are not present in ordinary SAW. Ueltschi has shown how to overcome these difficulties for sufficiently regular infinite-range step distributions and weak self-attractions. This article considers the case of bounded step distributions. For weak self-attractions we sh...
October 11, 2023
We give conditions on a real-valued function $F$ on $\mathbb{Z}^d$, for $d>2$, which ensure that the solution $G$ to the convolution equation $(F*G)(x) = \delta_{0,x}$ has Gaussian decay $|x|^{-(d-2)}$ for large $|x|$. Precursors of our results were obtained in the 2000s, using intricate Fourier analysis. In 2022, a very simple deconvolution theorem was proved, but its applicability was limited. We extend the 2022 theorem to remove its limitations while maintaining its simpli...
June 5, 2007
We extend the inductive approach to the lace expansion, previously developed to study models with critical dimension 4, to be applicable more generally. In particular, the result of this note has recently been used to prove Gaussian asymptotic behaviour for the Fourier transform of the two-point function for sufficiently spread-out lattice trees in dimensions d>8, and it is potentially also applicable to percolation in dimensions d>6.
December 26, 2018
This is a short review of the two papers on the $x$-space asymptotics of the critical two-point function $G_{p_c}(x)$ for the long-range models of self-avoiding walk, percolation and the Ising model on $\mathbb{Z}^d$, defined by the translation-invariant power-law step-distribution/coupling $D(x)\propto|x|^{-d-\alpha}$ for some $\alpha>0$. Let $S_1(x)$ be the random-walk Green function generated by $D$. We have shown that $\bullet~~S_1(x)$ changes its asymptotic behavior fr...