November 14, 2009
The Boltzmann-Gibbs probability distributions generated by logarithmically correlated random potentials provide a simple yet nontrivial example of disorder-induced multifractal measures. We introduce and discuss two analytically tractable models for such potentials. The first model uses multiplicative cascades and is equivalent to statistical mechanics of directed polymers on disordered trees studied long ago by B. Derrida and H. Spohn. Second model is the infinite-dimensiona...
February 20, 2001
Discrete multiplicative turbulent cascades are described using a formalism involving infinitely divisible random measures. This permits to consider the continuous limit of a cascade developed on a continuum of scales, and to provide the stochastic equations defining such processes, involving infinitely divisible stochastic integrals. Causal evolution laws are also given. This gives the first general stochastic equations which generate continuous multifractal measures or proce...
May 2, 2008
Multifractal analysis of multiplicative random cascades is revisited within the framework of {\em mixed asymptotics}. In this new framework, statistics are estimated over a sample which size increases as the resolution scale (or the sampling period) becomes finer. This allows one to continuously interpolate between the situation where one studies a single cascade sample at arbitrary fine scales and where at fixed scale, the sample length (number of cascades realizations) beco...
June 8, 2009
We achieve the multifractal analysis of a class of complex valued statistically self-similar continuous functions. For we use multifractal formalisms associated with pointwise oscillation exponents of all orders. Our study exhibits new phenomena in multifractal analysis of continuous functions. In particular, we find examples of statistically self-similar such functions obeying the multifractal formalism and for which the support of the singularity spectrum is the whole inter...
May 28, 2003
Multiplicative cascades have been introduced in turbulence to generate random or deterministic fields having intermittent values and long-range power-law correlations. Generally this is done using discrete construction rules leading to discrete cascades. Here a causal log-normal stochastic process is introduced; its multifractal properties are demonstrated together with other properties such as the composition rule for scale dependence and stochastic differential equations fo...
April 16, 1998
The n-point statistics of singularity strength variables for multiplicative branching processes is calculated from an analytic expression of the corresponding multivariate generating function. The key ingredient is a branching generating function which can be understood as a natural generalisation of the multifractal mass exponents. Various random multiplicative cascade processes pertaining to fully developed turbulence are discussed.
January 6, 2004
Negative, or latent, dimensions have always attracted a strong interest since their discovery. When randomness is introduced in multifractals, the sample-to-sample fluctuations of multifractal spectra emerge inevitably, which has motivated various studies in this field. In this work, we study a class of multinomial measures and argue the asymptotic behaviors of the multifractal function as . The so-called latent dimensions condition (LDC) is presented which states that latent...
July 26, 2011
In this paper, we study many geometrical properties of contour loops to characterize the morphology of synthetic multifractal rough surfaces, which are generated by multiplicative hierarchical cascading processes. To this end, two different classes of multifractal rough surfaces are numerically simulated. As the first group, singular measure multifractal rough surfaces are generated by using the $p$ model. The smoothened multifractal rough surface then is simulated by convolv...
February 28, 2003
We generalize the wavelet transform modulus maxima (WTMM) method to multifractal analysis of 3D random fields. This method is calibrated on synthetic 3D monofractal fractional Brownian fields and on 3D multifractal singular cascade measures as well as their random function counterpart obtained by fractional integration. Then we apply the 3D WTMM method to the dissipation field issue from 3D isotropic turbulence simulations. We comment on the need to revisiting previous box-co...
September 4, 2018
Multiplicative random cascade model naturally reproduces the intermittency or multifractality, which is frequently shown among hierarchical complex systems such as turbulence and financial markets. As described herein, we investigate the validity of a multiplicative hierarchical random cascade model through an empirical study using financial data. Although the intermittency and multifractality of the time series are verified, random multiplicative factors linking successive h...