October 27, 2020
Designing and optimizing different flows in networks is a relevant problem in many contexts. While a number of methods have been proposed in the physics and optimal transport literature for the one-commodity case, we lack similar results for the multi-commodity scenario. In this paper we present a model based on optimal transport theory for finding optimal multi-commodity flow configurations on networks. This model introduces a dynamics that regulates the edge conductivities ...
May 2, 2024
This paper models gas networks as metric graphs, with isothermal Euler equations at the edges, Kirchhoff's law at interior vertices and time-(in)dependent boundary conditions at boundary vertices. For this setup, a generalized $p$-Wasserstein metric in a dynamic formulation is introduced and utilized to derive $p$-Wasserstein gradient flows, specifically focusing on the non-standard case $p = 3$.
October 31, 2019
Network flows often exhibit a hierarchical tree-like structure that can be attributed to the minimisation of dissipation. The common feature of such systems is a single source and multiple sinks (or vice versa). In contrast, here we study networks with only a single source and sink. These systems can arise from secondary purposes of the networks, such as blood sugar regulation through insulin production. Minimisation of dissipation in these systems lead to trivial behaviour. ...
November 29, 2023
We provide new results on the structure of optimal transportation networks obtained as minimizers of an energy cost functional consisting of a kinetic (pumping) and material (metabolic) cost terms, constrained by a local mass conservation law. In particular, we prove that every tree (i.e., graph without loops) represents a local minimizer of the energy with concave metabolic cost. For the linear metabolic cost, we prove that the set of minimizers contains a loop-free structur...
January 15, 2024
We propose a mesoscopic modeling framework for optimal transportation networks with biological applications. The network is described in terms of a joint probability measure on the phase space of tensor-valued conductivity and position in physical space. The energy expenditure of the network is given by a functional consisting of a pumping (kinetic) and metabolic power-law term, constrained by a Poisson equation accounting for local mass conservation. We establish convexity a...
December 23, 2018
Murray's theory of constrained minimum-power branchings is critically reviewed in a generalised framework for a range of cases: channels with arbitrary cross-section shape, laminar flows of Newtonian and non-Newtonian fluids, and low and high Reynolds-number turbulent flows of Newtonian fluids. The theory states that the sum of hydraulic and metabolic power is minimised if and only if all channels satisfy the same relation between flow rate and effective radius. This relation...
March 19, 2018
The paper proposes a general framework to analyze control problems for conservation law models on a network. Namely we consider a general class of junction distribution controls and inflow controls and we establish the compactness in $L^1$ of a class of flux-traces of solutions. We then derive the existence of solutions for two optimization problems: (I) the maximization of an integral functional depending on the flux-traces of solutions evaluated at points of the incoming an...
March 23, 2023
We give a short overview of advantages and drawbacks of the classical formulation of minimum cost network flow problems and solution techniques, to motivate a reformulation of classical static minimum cost network flow problems as optimal control problems constrained by port-Hamiltonian systems (pHS). The first-order optimality system for the port-Hamiltonian system-constrained optimal control problem is formally derived. Then we propose a gradient-based algorithm to find opt...
October 14, 2022
Branched Optimal Transport (BOT) is a generalization of optimal transport in which transportation costs along an edge are subadditive. This subadditivity models an increase in transport efficiency when shipping mass along the same route, favoring branched transportation networks. We here study the NP-hard optimization of BOT networks connecting a finite number of sources and sinks in $\mathbb{R}^2$. First, we show how to efficiently find the best geometry of a BOT network for...
June 1, 2016
Highly-optimized complex transport networks serve crucial functions in many man-made and natural systems such as power grids and plant or animal vasculature. Often, the relevant optimization functional is non-convex and characterized by many local extrema. In general, finding the global, or nearly global optimum is difficult. In biological systems, it is believed that natural selection slowly guides the network towards an optimized state. However, general coarse grained model...