November 4, 2004
Similar papers 2
December 2, 2003
The spherical Hartree-Fock approximation is applied to the $abinitio$ no-core shell model, with a realistic effective nucleon-nucleon interaction in order to investigate the range of its utility. Hartree-Fock results for binding energies, one-body density distributions and occupation probabilities are compared with results from exact diagonalization in similar model spaces. We show that this mean field approximation, especially with second order corrections, is able to provid...
March 8, 2003
The relevance of the Dirac equation for computations of nuclear structure is motivated and discussed. Quantitatively successful results for medium- and heavy-mass nuclei are described, and modern ideas of effective field theory and density functional theory are used to justify them.
October 17, 2016
We merge two successful ab initio nuclear-structure methods, the no-core shell model (NCSM) and the multi-reference in-medium similarity renormalization group (IM-SRG) to define a new many-body approach for the comprehensive description of ground and excited states of closed and open-shell nuclei. Building on the key advantages of the two methods---the decoupling of excitations at the many-body level in the IM-SRG and the access to arbitrary nuclei, eigenstates, and observabl...
March 15, 2010
Correlations play a crucial role in the nuclear many-body problem. We give an overview of recent developments in nuclear structure theory aiming at the description of these interaction-induced correlations by unitary transformations. We focus on the Unitary Correlation Operator Method (UCOM), which offers a very intuitive, universal and robust approach for the treatment of short-range correlations. We discuss the UCOM formalism in detail and highlight the connections to other...
July 12, 2024
We present a new method for computing the lowest few eigenvalues and the corresponding eigenvectors of a nuclear many-body Hamiltonian represented in a truncated configuration interaction subspace, i.e., the no-core shell model (NCSM). The method uses the hierarchical structure of the NCSM Hamiltonian to partition the Hamiltonian as the sum of two matrices. The first matrix corresponds to the Hamiltonian represented in a small configuration space, whereas the second is viewed...
December 6, 2007
We report on recent microscopic calculations of reaction properties based upon the nuclear structure of the ab initio no-core shell model (NCSM).
December 14, 2005
Starting from the Argonne V18 nucleon-nucleon (NN) interaction and using the Unitary Correlation Operator Method, a correlated interaction v_UCOM has been constructed, which is suitable for calculations within restricted Hilbert spaces. In this work we employ the v_UCOM in Hartree-Fock, perturbation-theory and RPA calculations and we study the ground-state properties of various closed-shell nuclei, as well as some excited states. The present calculations provide also importan...
November 17, 2007
An overview of the ab initio no-core shell model is presented. Recent results for light nuclei obtained with the chiral two-nucleon and three-nucleon interactions are highlighted. Cross section calculations of capture reactions important for astrophysics are discussed. The extension of the ab initio no-core shell model to the description of nuclear reactions by the resonating group method technique is outlined.
September 19, 2019
The nucleon-pair approximation (NPA) can be a compact alternative to full configuration-interaction (FCI) diagonalization in nuclear shell-model spaces, but selecting good pairs is a long-standing problem. While seniority-based pairs work well for near-spherical nuclides, they do not work well for deformed nuclides with strong rotational bands. We propose an alternate approach. We show how one can write any Slater determinant for an even number of particles as a general pair ...
January 27, 1998
We present a very brief description of the Hartree-Fock method in nuclear structure physics, discuss the numerical methods used to solve the self-consistent equations, and analyze the precision and convergence properties of solutions. As an application we present results pertaining to quadrupole moments and single-particle quadrupole polarizations in superdeformed nuclei with A~60.