June 3, 1999
Similar papers 5
December 3, 2007
The constrained Hartree-Fock-Bogoliubov method is used with the Gogny interaction D1S to calculate potential energy surfaces of fissioning nuclei ${}^{226}$Th and ${}^{256,258,260}$Fm up to very large deformations. The constraints employed are the mass quadrupole and octupole moments. In this subspace of collective coordinates, many scission configurations are identified ranging from symmetric to highly asymmetric fragmentations. Corresponding fragment properties at scission ...
February 19, 2015
Static self-consistent methods usually allow to determine the most probable fission fragments mass asymmetry. We have applied random neck rupture mechanism to the nuclei in the configuration at the end of fission paths. Fission fragment mass distributions have been deduced from the pre-scission nuclear density distribution obtained from the self-consistent calculations. Potential energy surfaces as well as nuclear shapes have been calculated in the fully microscopic theory, n...
April 15, 2018
We propose a framework to calculate the dynamics at the scission point of nuclear fission, based as far as possible on a discrete representation of orthogonal many-body configurations. Assuming axially symmetric scission shapes, we use the $K$ orbital quantum number to build a basis of wave functions. Pre-scission configurations are stable under mean-field dynamics while post-scission configurations evolve to separated fragments. In this first exploratory study, we analyze a ...
November 6, 2018
The transformation of an atomic nucleus into two excited fission fragments is modeled as a strongly damped evolution of the nuclear shape, until scission occurs at a small critical neck radius, at which point the mass, charge, and shape of each fragment are extracted. The available excitation energy then is divided statistically on the basis of the microscopic level densities. This approach takes account of the important (and energy-dependent) finite-size effects. After the f...
September 16, 2024
The quantum-mechanical description of the collective angular motion in a system of two touching fission fragments is proposed. The main peculiarities of excitation spectrum and the structure of the wave functions are investigated. As found, the angular motion approximately corresponds to independent vibrations of fragments around the pole-to-pole configuration. The model allows us to explain the experimentally observed lack of correlation between the angular momenta of fissio...
December 24, 2020
The intrinsic spins and their correlations are the least understood characteristics of fission fragments from both theoretical and experimental points of view. In many nuclear reactions the emerging fragments are typically excited and acquire an intrinsic excitation energy and an intrinsic spin depending on the type of the reactions and interaction mechanism. Both the intrinsic excitation energies and the fragments intrinsic spins and parities are controlled by the interactio...
October 19, 2021
The calculations of the potential energy surface are essential in the theoretical description of the fission process. In the constrained self-consistent approach, the smooth evolution of nuclear shape is described from the ground state until a very elongated one with a narrow neck. In all microscopic calculations, the rupture of the neck at scission is associated with a substantial change of nuclear matter density distribution and rapid energy decrease. In this paper, we show...
December 5, 2024
This paper presents a theoretical description of the spin distributions of fragments from low-energy induced and spontaneous nuclear fission, expressed in an analytical form. The mechanism of pumping high spin values for deformed fission fragments is explained. The idea is that the source of the generation of high relative orbital moments and spins of the fragments are the transverse wriggling and bending vibrations of the pre-fragments, while the nucleus remains "cold" until...
October 29, 2019
Recent developments, both in theoretical modeling and computational power, have allowed us to make progress on a goal not fully achieved yet in nuclear theory: a microscopic theory of nuclear fission. Even if the complete microscopic description remains a computationally demanding task, the information that can be provided by current calculations can be extremely useful to guide and constrain more phenomenological approaches, which are simpler to implement. First, a microscop...
November 17, 2014
A possibility of formation of the three reaction products having comparable masses at the spontaneous fission of $^{252}$Cf is theoretically explored. This work is aimed to study the mechanism leading to observation of the reaction products with masses $M_1=$136---140 and $M_2=$68---72 in coincidence by the FOBOS group in JINR. The same type of ternary fission decay has been observed in the reaction $^{235}$U(n$_{\rm th}$,fff). The potential energy surface for the ternary sys...