May 23, 2001
Similar papers 4
September 19, 2008
A fundamental issue in classical electrodynamics is represented by the search of the exact equation of motion for a classical charged particle under the action of its electromagnetic (EM) self-field - the so-called radiation-reaction equation of motion (RR equation). In the past, several attempts have been made assuming that the particle electric charge is localized point-wise (point-charge). These involve the search of possible so-called "regularization" approaches able to d...
April 24, 2007
This paper follows in the tradition of direct-action versions of electromagnetism having the aim of avoiding a balance of infinities wherein a mechanical mass offsets an infinite electromagnetic mass so as to arrive at a finite observed value. Given that, in this respect the direct-action approached ultimately failed because its initial exclusion of self-action was found to be untenable in the relativistic domain, this paper continues the tradition considering instead a versi...
March 12, 2013
This paper presents an alternative prerelativistic approach to the vacuum case of classical electrodynamics represented by vacuum Maxwell equations. Our view is based on the understanding that the corresponding differential equations should be dynamical in nature and the physical relations represented by them should be directly verifiable at least in principle, so they must represent local energy-momentum balance relations.
July 11, 2008
An unsolved problem of classical mechanics and classical electrodynamics is the search of the exact relativistic equations of motion for a classical charged point-particle subject to the force produced by the action of its EM self-field. The problem is related to the conjecture that for a classical charged point-particle there should exist a relativistic equation of motion (RR equation) which results both non-perturbative, in the sense that it does not rely on a perturbative ...
April 25, 2012
The work is devoted to studying some new classical electrodynamics models of interacting charged point particles and related with them physical aspects. Based on the vacuum field theory no-geometry approach, developed in \cite{BPT,BPT1}, the Lagrangian and Hamiltonian reformulations of some alternative classical electrodynamics models are devised. A problem closely related to the radiation reaction force is analyzed aiming to explain the Wheeler and Feynman reaction radiati...
January 23, 2018
A fully relativistically covariant formulation of the classical Maxwell electrodynamics of an arbitrarily-moving point charge is presented, purely in terms of gauge invariant potentials without entailing any gauge fixing. A new, relativistically covariant energy-momentum tensor for the radiation fields is derived and yields results for the angular power distribution, in full agreement with results derived in a frame-dependent manner in standard texts of classical electrodynam...
February 6, 2015
In the classical vacuum Maxwell-Lorentz theory the self-force of a charged point particle is infinite. This makes classical mass renormalization necessary and, in the special relativistic domain, leads to the Abraham-Lorentz-Dirac equation of motion possessing unphysical run-away and pre-acceleration solutions. In this paper we investigate whether the higher-order modification of classical vacuum electrodynamics suggested by Bopp, Lande, Thomas and Podolsky in the 1940s, can ...
January 9, 2012
An exact solution is given to the classical electromagnetic (EM) radiation-reaction (RR) problem, originally posed by Lorentz. This refers to the dynamics of classical non-rotating and quasi-rigid finite size particles subject to an external prescribed EM field. A variational formulation of the problem is presented. It is shown that a covariant representation for the EM potential of the self-field generated by the extended charge can be uniquely determined, consistent with th...
September 3, 2019
The subject of radiation reaction in classical electromagnetism remains controversial over 120 years after the pioneering work of Lorentz. We give a simple but rigorous treatment of the subject at the textbook level that explains the apparent paradoxes that are much discussed in the literature on the subject. We first derive the equation of motion of a charged particle from conservation of energy and momentum, which includes the self-force term. We then show that this theory ...
July 17, 2009
The radiation reaction problem for an electric charge moving in flat space-time of three dimensions is discussed. The divergences stemming from the pointness of the particle are studied. A consistent regularization procedure is proposed, which exploits the Poincar\'e invariance of the theory. Effective equation of motion of radiating charge in an external electromagnetic field is obtained via the consideration of energy-momentum and angular momentum conservation. This equatio...