July 20, 2001
Similar papers 2
December 12, 2014
We investigate a scenario where quantum correlations affect the gravitational field. We show that quantum correlations between particles occupying different positions have an effect on the gravitational field. We find that the small perturbations induced by the entanglement depend on the amount of entanglement and vanish for vanishing quantum correlations. Our results suggest that there is a form of entanglement that has a weight, since it affects the gravitational field. Thi...
August 8, 2016
The quantization of the electromagnetic field has successfully paved the way for the development of the Standard Model of Particle Physics and has established the basis for quantum technologies. Gravity, however, continues to hold out against physicists' efforts of including it into the framework of quantum theory. Experimental techniques in quantum optics have only recently reached the precision and maturity required for the investigation of quantum systems under the influen...
December 19, 2017
In physics, every observation is made with respect to a frame of reference. Although reference frames are usually not considered as degrees of freedom, in all practical situations it is a physical system which constitutes a reference frame. Can a quantum system be considered as a reference frame and, if so, which description would it give of the world? Here, we introduce a general method to quantise reference frame transformations, which generalises the usual reference frame ...
June 22, 2024
We provide a possible fully geometric formulation of the core idea of quantum reference frames (QRFs) as it has been applied in the context of gravity, freeing its definition from unnecessary (though convenient) ingredients, such as coordinate systems. Our formulation is based on two main ideas. First, a QRF encodes uncertainty about what is the observer's (and, hence, the measuring apparatus's) perception of time and space at each spacetime point (i.e., event). For this, an ...
July 24, 2013
We consider the process of changing reference frames in the case where the reference frames are quantum systems. We find that, as part of this process, decoherence is necessarily induced on any quantum system described relative to these frames. We explore this process with examples involving reference frames for phase and orientation. Quantifying the effect of changing quantum reference frames serves as a first step in developing a relativity principle for theories in which a...
December 15, 2010
After a review of the problems induced by the Lorentz signature of Minkowski space-time, like the need of a clock synchronization convention for the definition of 3-space and the complexity of the notion of relativistic center of mass, there is the introduction of a new formulation of relativistic quantum mechanics compatible with the theory of relativistic bound states. In it the zeroth postulate of non-relativistic quantum mechanics is not valid and the physics is described...
October 8, 2024
Quantum theory and general relativity are about one century old. At present, they are considered the best available explanations of physical reality, and they have been so far corroborated by all experiments realised so far. Nonetheless, the quest to unify them is still ongoing, with several yet untested proposals for a theory of quantum gravity. Here we review the nascent field of information-theoretic methods applied to designing tests of quantum gravity in the laboratory. ...
July 4, 2012
This essay presents an accessible introduction to the basic motivations to seek a quantum theory of gravity. It focuses on one approach- loop quantum gravity - as an example of the rich philosophical issues that arise when we try to combine spacetime and quantum physics.
August 19, 2014
In general relativity (GR), spacetime geometry is no longer just a background arena but a physical and dynamical entity with its own degrees of freedom. We present an overview of approaches to quantum gravity in which this central feature of GR is at the forefront. However, the short distance dynamics in the quantum theory are quite different from those of GR and classical spacetimes and gravitons emerge only in a suitable limit. Our emphasis is on communicating the key strat...
January 27, 2021
In general relativity, the description of spacetime relies on idealised rods and clocks, which identify a reference frame. In any concrete scenario, reference frames are associated to physical systems, which are ultimately quantum in nature. A relativistic description of the laws of physics hence needs to take into account such quantum reference frames (QRFs), through which spacetime can be given an operational meaning. Here, we introduce the notion of a spacetime QRF, associ...