April 9, 2002
We address the problem of data clustering by introducing an unsupervised, parameter free approach based on maximum likelihood principle. Starting from the observation that data sets belonging to the same cluster share a common information, we construct an expression for the likelihood of any possible cluster structure. The likelihood in turn depends only on the Pearson's coefficient of the data. We discuss clustering algorithms that provide a fast and reliable approximation t...
July 19, 2023
Bayesian nonparametric mixture models are widely used to cluster observations. However, one major drawback of the approach is that the estimated partition often presents unbalanced clusters' frequencies with only a few dominating clusters and a large number of sparsely-populated ones. This feature translates into results that are often uninterpretable unless we accept to ignore a relevant number of observations and clusters. Interpreting the posterior distribution as penalize...
May 13, 2015
Clustering is widely studied in statistics and machine learning, with applications in a variety of fields. As opposed to classical algorithms which return a single clustering solution, Bayesian nonparametric models provide a posterior over the entire space of partitions, allowing one to assess statistical properties, such as uncertainty on the number of clusters. However, an important problem is how to summarize the posterior; the huge dimension of partition space and difficu...
January 10, 2020
Despite its well-known shortcomings, $k$-means remains one of the most widely used approaches to data clustering. Current research continues to tackle its flaws while attempting to preserve its simplicity. Recently, the \textit{power $k$-means} algorithm was proposed to avoid trapping in local minima by annealing through a family of smoother surfaces. However, the approach lacks theoretical justification and fails in high dimensions when many features are irrelevant. This pap...
August 24, 2018
Clustering is an essential data mining tool that aims to discover inherent cluster structure in data. For most applications, applying clustering is only appropriate when cluster structure is present. As such, the study of clusterability, which evaluates whether data possesses such structure, is an integral part of cluster analysis. However, methods for evaluating clusterability vary radically, making it challenging to select a suitable measure. In this paper, we perform an ex...
January 2, 2015
It is well known that most of the common clustering objectives are NP-hard to optimize. In practice, however, clustering is being routinely carried out. One approach for providing theoretical understanding of this seeming discrepancy is to come up with notions of clusterability that distinguish realistically interesting input data from worst-case data sets. The hope is that there will be clustering algorithms that are provably efficient on such 'clusterable' instances. In oth...
October 28, 2017
In this paper, we provide an approach to clustering relational matrices whose entries correspond to either similarities or dissimilarities between objects. Our approach is based on the value of information, a parameterized, information-theoretic criterion that measures the change in costs associated with changes in information. Optimizing the value of information yields a deterministic annealing style of clustering with many benefits. For instance, investigators avoid needing...
December 19, 2023
High-dimensional datasets often contain multiple meaningful clusterings in different subspaces. For example, objects can be clustered either by color, weight, or size, revealing different interpretations of the given dataset. A variety of approaches are able to identify such non-redundant clusterings. However, most of these methods require the user to specify the expected number of subspaces and clusters for each subspace. Stating these values is a non-trivial problem and usu...
December 13, 2011
Clustering is a fundamental task in unsupervised learning. The focus of this paper is the Correlation Clustering functional which combines positive and negative affinities between the data points. The contribution of this paper is two fold: (i) Provide a theoretic analysis of the functional. (ii) New optimization algorithms which can cope with large scale problems (>100K variables) that are infeasible using existing methods. Our theoretic analysis provides a probabilistic gen...
April 1, 1996
Clustering is often used for discovering structure in data. Clustering systems differ in the objective function used to evaluate clustering quality and the control strategy used to search the space of clusterings. Ideally, the search strategy should consistently construct clusterings of high quality, but be computationally inexpensive as well. In general, we cannot have it both ways, but we can partition the search so that a system inexpensively constructs a `tentative' clust...